首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Chemically prepared activated carbon derived from banana stalk (BSAC) was used as an adsorbent to remove malachite green (MG) dye from aqueous solution. BSAC was characterised using thermogravimetric analyser, Brunauer Emmett Teller, Fourier transform infrared spectrometry, scanning electron microscopy, pHpzc, elemental analysis and Boehm titration. The effectiveness of BSAC in adsorbing MG dye was studied as a function of pH, contact time, temperature, initial dye concentration and repeated desorption–adsorption processes. pHpzc of BSAC was 4.5 and maximum dye adsorption occurred at pH 8.0. The rate of dye adsorption by BSAC was very fast initially, attaining equilibrium within 120 min following a pseudo-second-order kinetic model. Experimental data were analysed by Langmuir, Freundlich and Dubinin–Raduschevich isotherms. Equilibrium data fitted best into the Langmuir model, with a maximum adsorption capacity of 141.76 mg·g?1. Δ G 0 values were negative, indicating that the process of MG dye adsorption onto BSAC was spontaneous. The positive values of Δ H 0 and Δ S 0 suggests that the process of dye adsorption was endothermic. The regeneration efficiency of spent BSAC was studied using 0.5 M HCl, and was found to be in the range of 90.22–95.16% after four cycles. This adsorbent was found to be both effective and viable for the removal of MG dye from aqueous solution.  相似文献   

2.
Heavy metal pollution of aqueous effluents is a matter of widespread concern. The use of low-cost materials for the adsorption of heavy metals seems to be a suitable choice for waste water treatment. Polyporus tenuiculus, easily cultivated on lignocellulosic waste, was assayed for Cu, Pb and Cd removal from aqueous solutions. Pb was removed more efficiently. Kinetics studies suggested a pseudo-second-order reaction and equilibrium was reached in ~ 30 min in all cases. The metal-sorption data were analysed according to several two-parameter isotherms. Data better fitted the Langmuir model for the three metals. A great dependence of metal adsorption with pH was observed. Characterisation of both the biomass and the complex metal-biomass was performed by FT-IR and SEM-EDX. Results suggest an ion exchange mechanism.  相似文献   

3.
The removal of arsenic from water with natural and modified clinoptilolite   总被引:1,自引:0,他引:1  
The presence of increased arsenic concentrations in Eastern Croatia is a consequence of the geological composition of the soil. Because of its known harmful effects, arsenic removal is of high importance and adsorption represents an attractive and economically efficient approach to arsenic removal. The use of zeolites obtained from the Donje Jesenje deposit, Croatia (CZ) and the Zlatokop deposit in Vranjska Banja, Serbia (SZ) in Na- and Fe–Na-modified forms was investigated in order to effectively remove arsenate and arsenite from aqueous solutions. The adsorption kinetics of arsenic was studied as a function of the initial arsenate and arsenite concentrations (30–300 μg · L?1), equilibration time (3–48 h), pH (5–10) and in the presence of sulfate and phosphate at initial concentrations of 0.2–0.5 mg · L?1. In order to estimate sorption constants designating the sorption capacity and affinity of the zeolites samples, the experimental results were fitted to the Langmuir and Freundlich sorption isotherms. Desorption tests conducted with 1–3 mol · L?1 HCl indicated that arsenate sorption was irreversible. The results obtained indicated that use of the Serbian zeolite in the Fe–Na-modified form (Fe–Na-SZ) was favourable for arsenate removal from water containing up to 30 μg As · L?1.  相似文献   

4.
A new adsorbent (ABS) with amidoxime functional group was prepared through graft polymerization of acrylonitrile onto banana stem (BS) using ceric ammonium nitrate (CAN)/HNO3 initiator system, followed by treatment with hydroxylamine hydrochloride in alkaline solution. Infrared spectroscopy, surface area analyzer, thermogravimetry, and potentiometric titration were used for the characterization of the adsorbent. Effective removal of U(VI) ions was demonstrated at the pH range 4.0–6.0. The mechanism for the removal of U(VI) ions by ABS was based on complexation adsorption model. Equilibrium was achieved in approximately 3 h. The experimental kinetic data were analyzed using first-order, second-order, and Elovich kinetic models, and are well fitted with second-order kinetics. The temperature dependence indicates an exothermic process. U(VI) adsorption was found to decrease with increase of ionic strength. The Freundlich isotherm model fitted the experimental equilibrium data well. The adsorption efficiency was tested using synthetic nuclear industry effluents. The maximum adsorption capacity for U(VI) removal was found to be 80 mg g-1 at 20°C. Adsorbed U(VI) ions were desorbed effectively, about 99% by 0.2 M HCl. Repeated adsorption/desorption cycles show the feasibility of the ABS for the removal of U(VI) ions from water and nuclear industry effluents.  相似文献   

5.
Gibbsite calcined at 400°C (GB400) was prepared, and its ability to adsorb rhodium(III) was investigated. Optimal pH, effect of contact time, temperature, adsorption isotherms, and recovery percentage were evaluated. The optimal pH was 6.3. The adsorption equilibrium was achieved within 24 h. The adsorption rate was found to be of pseudo-first order. The experimental data were fitted to both the Freundlich (r = 0.90–0.93) and Langmuir (r = 0.94–0.96) equations. The amount of rhodium(III) adsorbed decreased with increasing temperature. Rhodium(III) being adsorbed from phosphate or sulfate plating solution was recovered using hydrochloric acid and sodium hydroxide solutions at 1, 10, and 100 mmol L?1.  相似文献   

6.
Cadmium (Cd) is one of the heavy metals which contaminate the environment including water, air, and soil. At low concentrations, Cd produces adverse effects in aquatic organisms. An effort to reduce the level of Cd was conducted by removing the metal with chitosan. The aim of this study was to study the adsorption of Cd by using chitosan isolated from the shrimp Penaeus sp. as a function of stirring duration and chitosan concentration in aqueous solution. In this study, chitin was isolated by using NaOH 3% and HCl 1.25 N, adding NaOH 50% for the transformation of chitin to chitosan. For the adsorption test, chitosan was added to Cd solutions at concentrations of 0.2, 0.4, or 0.6 g per 10 ml Cd(NO3)2, stirring the solution for 5, 10, or 15 min, respectively. The results showed that the yield of isolated chitosan was 56% of crude prawn shell. The optimum concentration of chitosan was 0.6 g/10 ml with a stirring duration 10 min reducing Cd concentration by 91.7%.  相似文献   

7.
海泡石黏土矿物对Cu2+的吸附动力学研究   总被引:2,自引:0,他引:2  
研究分析了海泡石黏土矿物对铜离子的吸附性能和动力学特征,结果表明,海泡石黏土矿物对Cu~(2 )吸附的最佳pH值为6.0左右,随着pH值的增大,吸附作用减弱;在[Cu~(2 )]=100mg·l~(-1),溶液pH值为6,吸附时间为2h时,添加0.1 g海泡石,海泡石对Cu~(2 )的吸附去除率仅为39.5%,当海泡石用量提高至0.4 g时,其对Cu~(2 )的吸附去除率提高到94.8%;实验结果同样显示,18min内有90%的Cu~(2 )被海泡石吸附,随着吸附时间的增加,吸附作用趋于稳定,2h可达到吸附平衡。该吸附过程符合Langmuir和Freundlich等温吸附方程.同时,分别采用拟一级模型和拟二级模型考察了吸附动力学,并计算了这些动力学模型的速率常数.实验数据和拟二级模型计算结果之间有较好的相关性.  相似文献   

8.
Removal of cadmium(II), lead(II), and chromium(VI) from aqueous solution using clay, a naturally occurring low-cost adsorbent, under various conditions, such as contact time, initial concentration, temperature, and pH has been investigated. The sorption of these metals follows both Langmuir and Freundlich adsorption isotherms. The magnitude of Langmuir and Freundlich constants at 30°C for cadmium, lead, and chromium indicate good adsorption capacity. The kinetic rate constants (K ad) indicate that the adsorption follows first order. The thermodynamic parameters: free energy change (ΔG o), enthalpy change (ΔH o), and entropy change (ΔS o) show that adsorption is an endothermic process and that adsorption is favored at high temperature. The results reveal that clay is a good adsorbent for the removal of these metals from wastewater.  相似文献   

9.
In order to investigate the contribution of various black carbon (BC) contents to nonlinearity of sorption and desorption isotherms for acetochlor on sediment, equilibrium sorption and desorption isotherms were determined to measure sorption and desorption of acetochlor in sediment amended with various amounts of BC. In this paper, two types of BC referred to as BC400 and BC500 were prepared at 400°C and 500°C, respectively. Higher preparation temperature facilitated the formation of micropores on BC to enhance its sorption capacity. Increase of the BC content obviously increased the sorption amount and reduced the desorption amount for acetochlor. When the BC500 contents in total organic carbon (TOC) increased from 0 to 60%, Freundlich sorption coefficient (K f) increased from 4.07 to 35.74, and desorption hysteresis became gradually obvious.When the content of BC in TOC was lower than 23%, the sorption isotherm had a significant linear correlation (p = 50.05). In case of desorption, a significant nonlinear change could be observed when the content of BC was up to 13%. Increase of BC content in the sediment would result in shifting the sorption-desorption isotherms from linearity to nonlinearity, which indicated that contribution of BC to nonlinear adsorption fraction became gradually remarkable.  相似文献   

10.
袁敏  林志荣  徐仁扣 《生态环境》2012,(7):1319-1324
采用批平衡法,研究了不同温度下环丙氨嗪在Aldrich胡敏酸中的吸附与解吸特征。结果表明:环丙氨嗪吸附和解吸过程都包含极快速、快速和缓慢阶段。伪二级动力学方程能较好地描述不同温度下环丙氨嗪的吸附动力学特性,表明吸附速率决定于胡敏酸表面吸附位点的可用度,而不是溶液中环丙氨嗪的浓度。环丙氨嗪在极快速吸附阶段的吸附速率随温度的升高而增大,但平衡时的吸附量却随温度的增加而降低。吸附等温线和解吸曲线符合Langmuir方程和Freundlich方程。环丙氨嗪在胡敏酸上的解吸速率小于吸附速率,表明存在滞后效应。吸附焓变、熵变和自由能都为负值,表明环丙氨嗪在胡敏酸上的吸附是一个自发、熵减小的放热过程。-Go〈40 kJ.mol^-1表明环丙氨嗪在胡敏酸表面以物理吸附为主。  相似文献   

11.
Adsorption and desorption of 137Cs by acid sulphate soils from the Nakhon Nayok province, South Central Plain of Thailand located near the Ongkarak Nuclear Research Center (ONRC) were investigated using a batch equilibration technique. The influence of added limestone (12 and 18 tons ha?1) on 137Cs adsorption–desorption was studied. Based on Freundlich isotherms, both adsorption and desorption of 137Cs were nonlinear. A large portion (98.26–99.97%) of added 137Cs (3.7?×?103?7.03?×?105 Bq l?1) was sorbed by the soils with or without added lime. The higher lime treatments, however, favoured stronger adsorption of 137Cs as compared with soil with no lime, which was supported by higher K ads values. The addition of lime, the cation exchange capacity and pH of the soil increased and hence favoured the stronger adsorption of 137Cs. Acid sulphate soils with a high clay content, medium to high organic matter, high CEC, and predominant clay types consisting of a mixture of illite, kaolinite, and montmorillonite were the main soil factors contributing to the high 137Cs adsorption capacity. Competing cations such as NH4 +, K+, Na+, Ca2+, and Mg2+ had little influence on 137Cs adsorption as compared with liming, where a significant positive correlation between K ads and soil pH was observed. The 137Cs adsorption–desorption characteristics of the acid sulphate soils studied exhibited a very strong irreversible sorption pattern. Only a small portion (0.09–0.58%) of 137Cs adsorbed at the highest added initial 137Cs concentration was desorbed by four successive soil extractions. Results clearly demonstrated that Nakhon Nayok province acid sulphate soils have a high 137Cs adsorption capacity, which limits the 137Cs bioavailability.  相似文献   

12.
Raw peat was modified with sulfuric acid, then mixed modified with resin to prepare the modified peat–resin particles. Using the batch experimental systems, the removal of heavy metals (copper and lead) on the modified peat–resin particles was investigated. The data of the adsorption isotherm could be fitted by the Langmuir equation well. The adsorption rate of heavy metals on modified peat–resin particles was very swift. The removal processes of heavy metals on modified peat–resin particles could be well described by pseudo-second order model. The adsorption rate of lead was affected by the initial heavy metal concentration, initial pH, particle size, agitation speed and particle mass. In the adsorption of heavy metals (lead and copper) on the modified peat–resin particles, ion exchange was the major reaction mechanism. Desorption data showed that the lead adsorbed by modified peat–resin particle could be desorbed by 0.5 N or 1.0 N HNO3. The desorption rate was swift. The experiments indicated that the modified peat–resin particles have great potential for the removal of heavy metals from wastewater.  相似文献   

13.
干旱区绿洲灌漠土Cu、Zn和Pb的吸附解吸特征   总被引:7,自引:0,他引:7  
土壤重金属吸附解吸是影响土壤系统中重金属移动性和归宿的主要过程,影响重金属的生物有效性以及重金属在食物链中的传递等.配制一系列不同浓度的重金属,灌漠土对重金属溶液进行吸附实验24 h以达到平衡,再用硝酸铵和乙酸铵进行解吸实验24 h以达到平衡.利用热力学吸附平衡法,对西北干旱区绿洲灌漠土重金属Cu、Ni和Pb的吸附解吸行为进行序批实验研究.实验结果表明:(1)灰漠土在常温下对铜、锌和铅重金属离子的吸附等温线符合Freundlich型吸附模式,灰漠土对重金属铜、锌和铅的吸附能力由强到弱的顺序为:铅,铜,锌.(2)硝酸铵和乙酸铵解吸重金属的量与灰漠土吸附重金属量呈现出线性正相关,乙酸铵解吸重金属的量比硝酸铵解吸重金属的量大,两种解吸剂对铜、锌和铅重金属离子的解吸能力由大到小的顺序都为:铜,锌,铅,说明了一般外源的铜、锌和铅进入土壤以后,铜和锌可能比铅容易向四周转移.(3)硝酸铵和乙酸铵的解吸率呈谷形曲线,开始时硝酸铵和乙酸铵解吸重金属量的百分比随灰漠土吸附重金属量的增加而减小,在吸附量达到某一特定值时,解吸率随吸附量的增加而增加.灰漠土对铜、锌和铅的吸附作用以专性吸附为主,被灰漠土吸附的铜、锌和铅重金属离子较难解吸.  相似文献   

14.
Utilization of Amberlite XAD-2 surface modified by covalent immobilization of brilliant green through an azo spacer for adsorptive enrichment of Sn(II) from environmental and biological samples was highlighted. The resulting resin was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and scanning electron microscopy. The resin retained Sn(II) ions at an optimum pH of 9.5 with a sorption capacity of 40 mg g?1. The modified sorbent could be reused for 10 cycles without significant changes in sorption capacity. The recovery of Sn(II) was 98% when eluted with 0.1 mol L?1 ethylenediaminetetraacetic acid. Scatchard analysis revealed that binding sites in the modified resin were homogeneous. The equilibrium adsorption data were analyzed using the Langmuir, Freundlich, Temkin, and Redlich–Peterson isotherm models. The method was applied with satisfactory results for determination of Sn(II) ions in human plasma and sea water.  相似文献   

15.
As a biomass agricultural waste material, coconut shells were used for the preparation of high-quality modified activated carbon. Chemical modification of the surface of the prepared activated carbon is done by oxidation using H2O2 and HNO3, respectively. The surface area and pore volume of the coconut shells activated carbon are increased by the chemical modification, and followingly the removal of the metals is improved. The structural morphology and composition of the modified activated carbon coconut shells (MACCS) were evaluated by Fourier transform infrared (FTIR) spectra, thermogravimetric analysis–differential thermal analysis (TGA-DTA), scanning electron microscope (SEM), X-ray diffraction (XRD), surface area analysis (SAA), X-ray fluorescence (XRF), and carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis. The prepared MACCS has reasonably good chemical stability. The influence of solution pH, contact time, adsorbent dosage, adsorption temperature, initial metal concentrations, and interfering ions on the adsorption performance of the investigated ions onto the prepared sorbent was examined by a batch method. The selectivity sequence for sorption of Eu3+, Ce3+, Sr2+, and Cs+ ions on MACCS was found to be Eu3+?>?Ce3+?>?Sr2+?>?Cs+. The saturation capacities of MACCS for the studied metal ions were found to be 136.84, 85.55, 69.85, and 60.00?mg?g?1 for Eu3+, Ce3+, Sr2+, and Cs+ ions, respectively. The thermodynamic parameters, ΔH°, ΔS°, and ΔG° were also evaluated.  相似文献   

16.
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l?1), pH, contact time, and sorbent concentration (2–6 g l?1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l?1 of Cr6+ concentration on 5 g l?1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g?1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin–Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol?1 for 25 and 50 mg l?1 chromium concentration, respectively.  相似文献   

17.
The adsorption of a cationic (CTAB, cetyl trimethylammonium bromide) and an anionic surfactant (SLES, sodium dodecylethersulfate) from aqueous solution onto organic polymer resin (Lewatit VPOC 1064 MD PH) was studied. A series of batch experiments were performed to determine the sorption isotherms of surfactants to organic polymer resin. The experimental studies were analyzed by Langmuir and Freundlich isotherms. Furthermore, the isotherm parameters, average percentage errors (ε) of model data, and separation factor (R L) were calculated. Other factors influencing the adsorption capacity (contact time, adsorbent amount, and initial surfactant concentration) were also discussed. The experimental data fitted very well to the Langmuir equilibrium model in the studied concentration range. The calculated R L values showed that the adsorption of both surfactants were favorable. Among the surfactants, CTAB showed higher adsorption capacity onto organic polymer resin compared to SLES (Q 0 = 250 and 34.36 mg g−1, respectively).  相似文献   

18.
Sorption by humic acids is known to modify the bioavailability and toxicity of metals in soils and aquatic systems. The sorption of cadmium(II) and copper(II) to two soil humic acids was measured at pH 6.0 using ion-selective electrode potentiometric titration at different temperatures. Sorption reactions were studied with all components in aqueous solution, or with the humates in suspension. Adsorption reactions were described using a multiple site-binding model, and a model assuming a continuous log-normal distribution of adsorption constants. Adsorption of Cu2+ was more favourable than adsorption of Cd2+. The log-normal distribution model provided the closest fit to observations and allowed parameterisation of adsorption data using a mean adsorption constant (log K μ). Sorption of Cd2+ to dissolved humic acids increased slightly in extent and sorption affinity with increasing temperature, but the effect was small (log K μ 2.96–3.15). A slightly greater temperature effect occurred for sorption of Cd2+ to solid-phase humic acids (log K μ 1.30–2.08). Sorption of copper(II) to both aqueous- and colloidal-phase humates showed more pronounced temperature dependence, with extent of sorption, and sorption affinity, increasing with increasing temperature (log K μ 3.4–4.9 in solution and 1.4–4.5 in suspension). The weaker adsorption of Cd2+ than Cu2+, and smaller temperature effects for dissolved humates than suspended humates, suggested that the observed temperature effects had a kinetic, rather than thermodynamic, origin. For any metal-to-ligand ratio, free metal ion concentration, and by inference metal bioavailability, decreased with increasing temperature. The consistency of the data with kinetic rather than thermodynamic control of metal bioavailability suggests that equilibrium modelling approaches to estimating bioavailability may be insufficient.  相似文献   

19.
This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP < SPLP < TCLP < 0.1 M HCl < 0.5 M HCl < 1.0 M HCl < 3.0 M HCl. In the same extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.  相似文献   

20.
The adsorption of some heavy metals onto the walls of harvested, washed, and dried non-living biomass cells of different Pseudomonas strains was studied at optimum experimental conditions using a simplified single component system. The Langmuir adsorption model was found to be a suitable approach to describe the system via multi-step processes. Isotherms measured at 30.0°C and pH 5.5 with [M]total?=?10–100 mM for tight, reversible Cr6+(aq), Ni2+(aq), Cu2+(aq) and Cd2+(aq) binding by the cell walls of the investigated biomass fit the Langmuir model and give the pH-independent stoichiometric site capacities ν i and equilibrium constants K i for metal binding at specific biomass sites i?=?A, B, C, and D. Tight binding sites A, B, and D of the non-living biomass are occupied by CrVI, sites A and C by NiII, sites A and D by CdII, and only site B by CuII. It is concluded that ν i is a stoichiometric parameter that is independent of the magnitude of K i for binding site i and that the studied heavy metals selectively and tightly bind at different biomass sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号