首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
邻苯二甲酸二丁酯(di-n-butyl phthalate,DBP)是一种在环境中广泛存在的有毒有机化合物,已被我国列为优先控制污染物之一。本研究探讨了不同浓度的DBP污染对黑土呼吸、微生物量以及黑土酶活性的影响。结果表明,DBP污染处理的黑土呼吸速率和微生物量碳较对照均显著增加;微生物氮在DBP污染过程中呈"降低-升高-降低"波动性变化;微生物磷与DBP污染浓度呈显著负相关;DBP对黑土多酚氧化酶表现为先促进后抑制,对转化酶和蛋白酶活性表现为低浓度促进而高浓度抑制;在DBP污染过程中脲酶呈现被激活状态;黑土过氧化氢酶和酸性磷酸酶均受到DBP污染的显著抑制。通过相关性分析发现,土壤微生物量、土壤酶活性与DBP污染浓度之间存在着高度的相关性。由此可推断,DBP污染改变了黑土呼吸、微生物量和酶学活性的代谢特征,进而有可能影响了黑土的生态系统功能,威胁到黑土的可持续利用。  相似文献   

2.
探讨夹竹桃(Nerium oleander)根系分泌物对土壤微生物量碳、呼吸强度等微生物学特征及土壤微生物群落功能多样性的影响,深入揭示夹竹桃根系分泌物的微生态效应,通过向土壤中添加植物根系分泌物溶液的方法,研究了不同浓度(CK,15 mL去离子水作为对照;LC,5 mL分泌物+10 mL去离子水;MC,10 mL分泌物+5 mL去离子水;HC,15 mL分泌物)的外源植物根系分泌物对土壤理化性质、土壤微生物群落功能多样性、微生物量碳、微生物熵、基础呼吸和代谢熵的影响。结果表明,不同浓度根系分泌物处理pH值显著低于CK(P<0.05);有机碳、含水量、全氮、碱解氮、速效磷含量显著高于CK(P<0.05),其大小表现为HC>MC>LC>CK;而土壤全磷无明显差异(P>0.05)。细菌、真菌、放线菌和微生物总数均显著高于对照(P<0.05),不同处理之间差异均显著(P<0.05),其大小表现为HC>MC>LC>CK。微生物量碳、微生物熵和基础呼吸均显著高于对照(P<0.05),不同处理之间差异均显著(P<0.05),其大小表现为HC>MC>LC>CK。土壤代谢熵表现为HC>MC>LC>CK,HC和MC差异不显著(P>0.05)。平均吸光值、物种丰富度指数、Mcintosh指数均显著高于对照(P<0.05),不同处理之间差异均显著(P<0.05),其大小表现为HC>MC>LC>CK。不同处理间优势度指数差异不显著(P>0.05)。主成分分析表明:中浓度根系分泌物处理的土壤与CK土壤微生物群落代谢特征相近,其明显不同于高浓度根系分泌物处理的土壤,说明它们对单一碳源的利用能力不同,其群落代谢特征存在差异。总体来看,高浓度的根系分泌物能够显著改变土壤微生物学特性及群落功能多样性。  相似文献   

3.
A simple approach to modeling microbial biomass in the rhizosphere   总被引:4,自引:0,他引:4  
Microorganisms make an important contribution to the degradation of contaminants in bioremediation as well as in phytoremediation. An accurate estimation of microbial concentrations in the soil would be valuable in predicting contaminant dissipation during various bioremediation processes. A simple modeling approach to quantify the microbial biomass in the rhizosphere was developed in this study. Experiments were conducted using field column lysimeters planted with Eastern gamagrass. The microbial biomass concentrations from the rhizosphere soil, bulk soil, and unplanted soil were monitored for six months using an incubation–fumigation method. The proposed model was applied to the field microbial biomass data and good correlation between simulated and experimental data was achieved. The results indicate that plants increase microbial concentrations in the soil by providing root exudates as growth substrates for microorganisms. Since plant roots are initially small and do not produce large quantities of exudates when first seeded, the addition of exogenous substrates may be needed to increase initial microbial concentrations at the start of phytoremediation projects.  相似文献   

4.
以上海市沿海防护林为研究对象,选择6种不同树种的防护林带,采集0~10、10~20、20~40、40~60cm四层土样为研究材料,运用典型相关分析法,对防护林地土壤养分因子、微生物因子和酶活性因子中每两组变量间的相关性进行了分析。结果表明:三组变量土壤养分、微生物、酶活性中,每两者之间均有显著的典型相关变量存在,而且基本能够代表变量总体相关信息;土壤养分和土壤微生物间的相关主要由全氮、速效磷含量与微生物生物量氮、微生物生物量碳和微生物生物量磷引起;土壤养分与土壤酶活性间的相关性主要由全氮、有效磷、水解氮含量与脲酶、蛋白酶活性的相关性引起;土壤微生物与土壤酶活性间的相关性主要是由微生物生物量氮、微生物生物量磷与脲酶、蛋白酶、碱性磷酸酶活性的相关性引起;不同林地不同土壤层次的养分、微生物及酶活性在各对典型变量上的聚集趋势可为防护林建设过程中的树种选择与土壤健康诊提供一定的依据。  相似文献   

5.
小叶锦鸡儿(Caragana microphylla)是科尔沁沙地广为采用的豆科固沙植物。为探讨采用小叶锦鸡儿固定流沙后,土壤生物活性的变化特点和发展趋势,选取5、10、22年生小叶锦鸡儿人工固沙群落为对象,以半流动沙丘和天然群落为对照,研究了人工固沙群落发育过程中土壤磷酸单酯酶、蔗糖酶、蛋白酶、脲酶、脱氢酶的活性和微生物生物量C、N、P质量分数的变化特征。土壤按5层取样:0~10,10~20,20~30,30~40,40~50cm。结果表明,随着小叶锦鸡儿固沙群落发育时间的增长,群落内土壤生物活性逐渐改善,沙土中5种酶的活性和土壤微生物生物量C、N和P质量分数均大幅度提高,其中0~10cm土层增幅最大。土壤酶中蔗糖酶的活性增加最为迅速,5、10和22年生群落0~10cm土层中蔗糖酶的活性分别是半流动沙丘的76.80,167.27和261.63倍。22年生群落的土壤生物活性已接近于天然群落,处于相对稳定的状态。小叶锦鸡儿群落中土壤酶和微生物生物量之间存在极显著的正相关关系。以上表明,小叶锦鸡儿不仅具有较好的防风固沙性能,而且表现出强大的改善土壤生物活性的能力,可作为优良的固沙植物材料在本地区大面积推广应用。  相似文献   

6.
To reveal the biological characteristics of urban forest soil and the effects of soil enzyme on soil fertility as well as the correlation between physicochemical properties and enzyme activities, 44 urban forest soil profiles in Nanjing were investigated. Basic soil physicochemical properties and enzyme activities were analyzed in the laboratory. Hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase were determined by potassium permanganate titration, TTC (C19H15N4·Cl) colorimetry, phenyl phosphate dinatrium colorimetry, and anthrone colorimetry, respectively. The result showed that soil pH, organic carbon (C), and total nitrogen (N) had great effects on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 0–20 cm thick soil. However, pH only had great effect on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 20–40 cm thick soil. Hydrogen peroxidase, dehydrogenase, and alkaline phosphatase were important biological indicators for the fertility of urban forest soil. Both in 0–20 cmand 20–40 cmsoil, soil enzyme system (hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase) had a close relationship with a combination of physicochemical indicators (pH, organic C, total N, available K, available P, cation exchange capacity (CEC), and microbial biomass carbon (Cmic)). The more soil enzyme activities there were, the higher the fertility of urban forest soil.  相似文献   

7.
The increased production and commercial use of nanoparticles (NPs), combined with a lack of regulation regarding their disposal, may result in the unwanted introduction of NPs to soils. In this study, the toxicity on soil enzyme activity and growth of Cucumis sativus treated with Zn or ZnO NPs was evaluated in pot soils. Specifically, C. sativus was cultivated in soils treated with Zn NPs, ZnO NPs or Zn2+ for eight weeks, after which the treatment effects on biomass and bioaccumulation were evaluated. In addition, the treatment effects on soil dehydrogenase, β -glucosidase and acid phosphatase were investigated. Soil enzyme activities were influenced by all treatments, with an especially large decrease in dehydrogenase activity in response to Zn2+ treatment. Biomass and root length also decreased in response to Zn2+ treatment. Finally, the Zn contents of C. sativus were much lower in the Zn NP and ZnO NP treatment groups than in the Zn2+ treatment group. Therefore, toxicity on soil microbial activity may have a greater influence than phytotoxicity due to immobilisation and aggregation of NPs in the soil.  相似文献   

8.
Influences of temperature (0 and 20°C) and pH (3.0, 5.0, and 7.4) on the effect of zinc (Zn) and copper (Cu) on proteolytic activities of intestinal mucosa in planktivorous (blue bream, bleak), bentophagous (bream, roach) fishes and their potential preys (pond snail Limnaea stagnalis, planorbid Planorbarius purpura, dreissena Dreissena polymorpha, midge larvae Chironomus sp., water flea Daphnia longispina and total zooplankton) are revealed in this article. Cu decreases the caseinolytic and hemoglobinolytic activities in both fish and their preys more than Zn at temperature 20°C and pH 7.4. Low temperature intensifies the negative effect of the metals on the protease activity in fish (in the case of Zn 5–10 times, in the case of Cu 5–30 times). In fish prey species, the negative effect of the metals on the proteinase activity may be more significant. The influence of pH on Zn and Cu effects is less pronounced than that of low temperature. Maximum reduction of enzyme activities is observed for the combined action of low temperature and pH as well as of the studied metals.  相似文献   

9.
子午岭植被演替过程中土壤生物学特性的动态   总被引:1,自引:1,他引:1  
贾国梅  王刚  陈芳清 《生态环境》2007,16(5):1466-1469
土壤生物学特性在土壤有机质的形成和降解、营养循环等方面起重要作用。植被的恢复演替显著影响土壤生物学特性,尤其影响土壤酶活性。植被演替过程中土壤酶活性的研究结果表明,随着植被恢复年限的延长,土壤脲酶和转化酶的活性逐渐提高,17 a达到最大值,随后有所降低。土壤酶活性和土壤化学特性和微生物量的相关性分析表明,土壤转化酶和脲酶不仅互相之间具有显著的相关性,而且它们与土壤有机碳、全氮、微生物碳氮之间都具有显著的正相关性,说明土壤酶活性与土壤有机质紧密相关,与微生物的大小紧密相关,所以土壤酶活性可以表征土壤生物学肥力。  相似文献   

10.
The fate of azoxystrobin in soil under the effect of different temperature is of interest because application directions specify soil-surface treatments for number of agricultural pests. Temperature is an important factor governing the rate of degradation in soil pore. The purpose of this investigation was to understand better the effect of temperature on the degradation of azoxystrobin in Japanese Andisol soil. This was done through laboratory incubation of soil at three different temperatures (5 °C, 20 °C, 35 °C). First-order kinetics could be used to describe degradation of azoxystrobin under controlled condition of temperature (r2 ? 94). The results showed that, during the 120-day incubation period for azoxystrobin, 64%, 70%, and 78% of applied azoxystrobin were degraded at 5 °C, 20 °C, and 35 °C, respectively. By using the Arrhenius equation, the activation energy of degradation of azoxystrobin fungicide was calculated (7.48 ± 1.74 kJ mol?1) in soils, which confirm that temperature had a significant influence on the degradation rate. Q10 value of 1.11, for azoxystrobin, indicated that the response of fungicide dissipation to temperature was large. For azoxystrobin, there was a much larger difference in dissipation rates at 5 °C and 35 °C, indicating that biological and/or chemical degradation of azoxystrobin may have nearly reached its optimum at 35 °C.  相似文献   

11.
In terrestrial ecosystems, plant root exudates clearly play a crucial role in the belowground ecosystem. However, there have been few reports on root exudates from field-grown plants or mature trees in situ, especially when exposed to experimental warming. In this study, we adopted and modified a culture-based cuvette system developed especially for root exudation collection in the field to collect soluble root exudates of a subalpine coniferous species, Abies faxoniana, under experimental warming and nitrogen fertilisation treatments. We then analysed the chemical composition and relative abundance of root exudates using gas chromatography-mass spectrometry (GC-MS). The major chemical constituents of root exudates were phenols and their derivatives of all the different treatments, such as 2,6-di-tert-butyl-4-methylphenol. Experimental warming had significant effects on the relative contents of major compounds and an increase effect on the total phenolic acid compounds. By contrast, there were small significant effects of N fertilisation on root exudation and no significant effects of the warming×N fertilisation interaction. Meanwhile, warming also markedly increased soil polyphenol oxidase activity and it may be soil ecological adjustment response to changes of root exudation under global climate warming.  相似文献   

12.
The present study aims to analyze the interaction of prevailing biotic pressure on soil environment with emphasis on its physicochemical and microbiological characteristics determining soil fertility status and thus supporting plant and animal biodiversity in Nanda Devi Biosphere Reserve (NDBR) which is located in northern part of Uttaranchal hills between 79 degrees 40'E to 80 degrees 05'E longitude and 30 degrees 17'N to 30 degrees 41'E latitude. The experimental results revealed that the physico-chemical characteristics (viz., moisture, pH, EC, C, N, P, K, CEC) of soil were maximum in moderately grazed meadow and minimum in intensively grazed meadow. Soil microbial analysis measured in terms of total viable count (TVC) exhibited grazing sensitivity trend being maximum population of bacteria > fungi > actinomycetes. The soil microbial population was positively correlated with soil respiration, dehydrogenase activity, acid phosphatase and microbial biomass, which exhibited uneven trend with grazing pressure. Soil from moderately grazed meadow showed highest microbial count and enzyme activities, whilst intensively grazed meadow showed lowest microbial count and enzyme activities. This depicts the beneficial role of prescribed grazing up to limited extent in management of soil fertility, which might have supported luxuriant growth of a variety of grasses.  相似文献   

13.
Succinate respiration and various enzyme activities were measured in the white dorsal muscles of golden orfs (goldcoloured race of Idus idus L.) adapted to different temperatures. Some of the values obtained on enzyme activities measured on successive days revealed significant differences in fish adapted to the same temperature. These differences could not be attributed to variations between experimental groups, nor to disturbances caused by the removal of some fish (Figs. 2 and 3). In adaptation experiments, attention must be paid to diurnal fluctuations in enzyme activity; such fluctuations were especially apparent with isocitrate-dehydrogenase. Season can also influence the level of enzyme activity, possibly through changes in day-length. Succinate respiration of golden orfs adapted to 5°C is about 10% higher than in individuals adapted to 20°C (experimental temperature 25°C). Following reverse adaptation from 20° to 5°C (at the rate of 5Co/h), the values approach, after fluctuations, those of 5°C individuals. After raising or lowering the adaptation temperature at the rate of 5 or 2 Co/h), fluctuations in several enzymes appeared initially, as in the abrupt transfers reported by Lehmann (1970a); even if significant, these were, however, not always reproducible. Change in temperature causes a limited phase of increased functional lability.  相似文献   

14.
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.  相似文献   

15.
植物群落对铜尾矿废弃地土壤微生物量和酶活性的影响   总被引:1,自引:0,他引:1  
以铜尾矿废弃地为对象,研究了铜尾矿废弃地上植物群落发展与表层尾矿微生物量C、N和脱氢酶、过氧化氢碱性磷酸酶和脲酶活性的变化,探讨了植物群落-微生物量C、N_土壤酶活性之间的相互关系.结果表明,随着植物群落的发展,铜尾矿废弃地表层尾矿微生物量和酶活性在不断增加;铜官山老尾矿废弃地白茅群落下表层尾矿(TBM)微生物量和酶活性与杨山冲尾矿废弃地及铜官山新尾矿废弃地表层尾矿微生物量和酶活性存在显著差异性(p<0.05).相关分析表明铜尾矿废弃地表层尾矿微生物量C、N与土壤有机质、总氮之间呈显著正相关(P<0.01);脱氧酶、碱性磷酸酶及脲酶与微生物量C、微生物量N、土壤有机质、总氮之问呈显著正相关(P<0.01),但过氧化氢酶与微生物量C、微生物量N、土壤有机质、总氮之间呈显著负相关(P<0.01).  相似文献   

16.
Balanus amphitrite, an acorn barnacle, is distinctly euryhaline, eurythermal and a dominant fouling organism found in warm and temperate waters throughout the world. In this study, the influence of temperature and food concentration on the reproductive biology of this species collected from a tropical habitat was evaluated. Adult barnacles were maintained at 20, 25 and 30°C temperatures at different concentrations of food (50, 100, 150 and 200 Artemia ind−1 day−1). In this previously believed obligatory cross-fertilizing hermaphrodite, self-fertilization was observed. The rise in temperature from 20 to 30°C resulted in a longer interbreeding interval (6–7 days, 200 Artemia ind−1 day−1; 11–13 days, 50 Artemia ind−1 day−1). Computed carbon gained through feeding during the interbreeding interval indicated an inverse relationship to the temperature. At 20°C, although a greater amount of carbon was gained through feeding, the numbers of larvae produced were fivefold less when compared to those raised at 30°C. At 20°C, 2.3 μg C was required to produce a single larva, whereas at 30°C it was 0.4 μg C. A rise in rearing temperature also influenced the molting rate positively. Observations on temporal variation in the gonad development of this species in a tropical coastal environment influenced by the monsoons indicated gonad development to be positively related to chlorophyll a concentration.  相似文献   

17.
The effect of light and temperature on the growth of Microcystis ichthyoblabe and Anabaena aphanizomenoides, isolated from the subtropical Oued Mellah lake, Morocco (33°30′N–07°20′W), were investigated in batch culture. Growth rates at 66 light–temperature combinations were determined and fitted with different mathematical models. The results show that the two Cyanobacteria grow at all light intensities and temperatures, except at 10 °C for A. aphanizomenoides, where the growth was strongly limited. The μmax of M. ichthyoblabe increased with temperature from 0.56 d?1 at 10 °C to 1.32 d?1 at 35 °C. At all tested temperatures, a relative photoinhibition within the studied range of irradiance was observed and the photosensitivity was thermodependent. For Anabaena, the obtained μmax ranged between 0.07 d?1 at 10 °C and 1.46 d?1 at 35 °C, and a weak photoinhibition was observed at 15 °C. The positive correlation between μmax and Iopt (r2≥0.93) indicates a close interaction between light and temperature on the cyanobacteria growth. The results obtained in this work suggest that the growth of these two species is possible under low light and low temperature.  相似文献   

18.
Orwin KH  Wardle DA  Greenfield LG 《Ecology》2006,87(3):580-593
Plants return a wide range of carbon (C) substrates to the soil system. The decomposition rate of these substrates is determined by their chemical nature, yet few studies have examined the relative ecological role of specific substrates (i.e., substrate identity) or mixtures of substrates. Carbon substrate identity and diversity may alter soil chemistry and soil community composition, resulting in changes in belowground ecosystem functions such as decomposition and nutrient transfer, creating feedbacks that may affect plant growth and the aboveground community. A laboratory experiment was set up in which eight C substrates of varying chemical complexity were added to a base soil singly, in pairs, fours, or with all eight together every four days over a 92-day period. After 92 days these soils were analyzed for changes in chemistry, microbial community structure, and components of ecosystem functioning. The identity of the added C substrates significantly affected soil chemistry, microbial basal and substrate-induced respiration, and soil microbial community structure measured by either the catabolic response profile (CRP) technique or phospholipid fatty acid composition. These belowground changes strongly affected the ability of the soil microflora to decompose cellulose paper, probably because of differential effects of the C substrates on soil energy supplies and enzyme activities. The addition of C substrates to soils also reduced plant growth compared to the unamended control soil, but less so in soils amended with a tannin than those amended with other substrates. Carbon substrate diversity effects saturated at low diversity levels, tended to have neutral or negative effects on ecosystem functions, and depended strongly on which C substrates were added. It increased CRP compound use but had little effect on other measures of the soil microbial community. Overall, results showed that the chemical nature of C substrates added to soil, and sometimes their diversity, can affect the soil microbial community and soil chemistry, which subsequently affect other ecosystem processes such as decomposition and plant growth. The identity and diversity of substrates that plants add to soil may therefore have important consequences for both above- and belowground ecosystem functions.  相似文献   

19.
大豆根系分泌物和根细胞壁对难溶性磷的活化   总被引:8,自引:0,他引:8  
探讨了不同磷效率大豆品种根系细胞壁和根分泌物对难溶性铝磷的活化与吸收能力。结果表明,砂培条件下,磷高效品种(巴西10号)对难溶性铝磷的吸收显著高于磷低效品种(本地2号)。铝磷处理条件下,根系总表面积巴西10号是本地2号的131%,而钾磷处理二者没有明显差异。根系细胞壁对铝磷的活化表明,大豆苗期根系细胞壁对铝磷的活化量显著高于成熟期。苗期、成熟期巴西10号对铝磷的活化量为本地2号的119%、176%。不同栽培方式根系细胞壁对铝磷的活化量表现为水培大于砂培,水培条件下两个大豆基因型对铝磷的活化量没有差异。不同生育时期、栽培方式根分泌物对铝磷的活化量表现为,成熟期大于苗期,砂培大于水培。巴西10号根分泌物对铝磷的活化量比本地2号分别高出69.3%(成熟期)和40.1%(砂培)。上述研究结果表明,大豆根分泌物和根细胞壁对难溶性铝磷的溶解具有促进作用,有利于大豆对铝磷的吸收。  相似文献   

20.
The relationship between somatic growth and incremental growth of otoliths of Pacific saury, Cololabis saira (Brevoort), larvae under different temperature conditions was studied in the laboratory for three age groups (0 to 9, 10 to 20 and 20 to 30 d posthatch). Larvae were incubated from hatching to 9 d at 24, 20, and 16 °C. Further, larvae initially reared at an ambient temperature of 21.7 °C were transferred to experimental temperatures of 22, 18, and 14 °C on Day 10 and reared to Day 20 and similarly from Day 20 and reared to Day 30 posthatch. Growth trajectories of larvae sampled at the end of the three experiments were back-calculated using the biological intercept method and compared to the measured values 0 and 5 d after the start of each experiment. Back-calculated knob length at the different temperatures indicated no significant difference to the measured knob lengths except for the cases at 20 °C from hatching to 9-d-old larvae and at 14 °C from 20- to 30-d-old larvae. The close correlation between somatic and otolith growth shown in this study indicated the feasibility of estimating the growth history of Pacific saury larvae using otolith readings. Received: 14 April 1999 / Accepted: 27 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号