首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The photocatalytic degradation of Procion blue H-B dye in biodegraded textile washwater has been investigated for the complete removal of color and maximum reduction of chemical oxygen demand (COD). Pseudomonas putida was utilized for obtaining biodegraded textile washwater. In this process, silver-doped TiO2 photocatalyst was prepared and experiments were carried out to study the effects of UV and mercury lamp irradiations on COD reduction and removal of color. The thus prepared silver-doped TiO2 catalyst was characterized by thermogravimetric and differential thermal analysis, UV-visible spectrometer, X-ray diffraction, scanning electron microscope, energy dispersive X-ray microanalysis, and BET surface area techniques. Adsorption studies were also carried out to evaluate the fitness of isotherm models. The results show that the silver-doped TiO2 has enhanced the photodegradation of Procion blue H-B dye under UV and mercury lamp irradiations. The enhanced activity of silver-doped TiO2 is due to the enrichment of electron–hole separation by electron trapping of silver particles.  相似文献   

2.
Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.  相似文献   

3.
There are concerns regarding the toxicity of nano-TiO2, but data are limited on the mechanism underlying oxidative damage to liver of mice. In order to further study these mechanisms of nano-TiO2 particles, nano-anatase TiO2 (5 nm) were injected into the abdominal cavity of ICR mice daily for 14 days and biochemical parameters in liver were investigated. The increase of hepatic lipids peroxide produced by nano-anatase TiO2 suggested an oxidative attack that was activated by a reduction of antioxidative defense mechanisms as measured by analyzing the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione peroxidase, as well as antioxidant levels such as glutathione and ascorbic acid. The antioxidative responses of liver were reduced in mice by nano-anatase TiO2. The oxidative stress of nano-anatase TiO2 on liver was greater than that seen with bulk-TiO2.  相似文献   

4.
ZnS-loaded TiO2 (ZnS–TiO2) was synthesized by a sol–gel method. The catalyst was characterized by using different techniques (XRD, HR-SEM, EDS, DRS, PL, XPS, and BET methods). The photocatalytic activity of ZnS–TiO2 was investigated for the degradation of Sunset Yellow FCF (SY) dye in an aqueous solution using ultraviolet light. ZnS–TiO2 is found to be more efficient than prepared TiO2, TiO2–P25, TiO2 (Merck), and ZnS at pH 7 for the mineralization of SY. The effects of operational parameters such as the amount of photocatalyst, dye concentration, and initial pH on photo mineralization of SY have been analyzed. The mineralization of SY has been confirmed by chemical oxygen demand measurements. The catalyst is found to be reusable.  相似文献   

5.
The use of aquatic organisms to monitor for contamination is well-established. Therefore, this study was designed to assess the adverse effects of titanium dioxide nanoparticles (TiO2NP) in freshwater snail Lymnea luteola L. (L. luteola). For TiO2NPs ecotoxicity tests, snails were exposed for seven days. A dose and time-response relationship was observed for TiO2NP-induced genotoxicity. Induction of oxidative stress in digestive gland was observed by a decrease in glutathione and gluthathions-S-transferase levels accompanied by elevated malondialdehyde levels at TiO2NP (9 and 28 µg/mL). Superoxide dismutase activities were markedly reduced at TiO2NP (9 and 28 µg/mL) at days 1 and 3, but not at day 7. Catalase activities were decreased at days 1 and 3 but increased at higher concentration of TiO2NP at day 7. DNA fragmentation occurring in L. luteola due to ecotoxic impact TiO2NP was further substantiated by alkaline single-cell gel electrophoresis assay and expressed in terms of percent tail DNA and olive tail moment. The results indicate that the interaction of these TiO2NP with snail influences the toxicity, which is mediated by oxidative stress in a dose- and time-dependent manner. The measurement of DNA integrity in L. luteola thus provides an early warning signal of contamination of the aquatic ecosystem by TiO2NP. Data suggest the freshwater snail L. luteola is a potential biomonitor organism.  相似文献   

6.
In current research, the combined effects of copper oxide nanoparticles (CuO NPs) and titanium dioxide nanoparticles (TiO2 NPs) on the histopathological anomalies of gill and intestine tissues in common carp (Cyprinus carpio) were studied. Common carp were exposed to TiO2 NPs (10.0?mg L?1), CuO NPs (2.5 and 5.0?mg L?1), and mixture of TiO2 NPs (10.0?mg L?1)?+?CuO NPs (2.5 and 5.0 mg?L?1) for two periods of exposure (10 and 20 days) and recovery (30 and 40 days). The most common histopathological anomalies in the gill of common carp such as hyperplasia, oedema, curvature, fusion, aneurism, and necrosis were observed. The synergistic effect of co-existing TiO2 NPs and CuO NPs reduced the length of secondary lamella and increased the diameters of the gill filaments and secondary lamellae. Moreover, the presence of TiO2 NPs increased the CuO NPs effects on the histopathological anomalies of intestine tissue and the synergistic effect of TiO2 NPs and CuO mixture leads to an increase in the severity of histopathological lesions such as degeneration, swelling of goblet cells, and necrosis - erosion in the intestine tissue. In conclusion, the presence of TiO2 NPs increased the toxicity of CuO NPs.  相似文献   

7.
In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg?L–1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW?cm–2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The E Eo of the MFC-PEC system was approximately 0.675 kWh?m–3?order–1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg?L–1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spinresonance spectroscopy (ESR) study demonstrated that ?OH was formed under visible light, and ?O 2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.
  相似文献   

8.
The synthesis of silver doped nano-particulate titanium dioxide (Ag/TiO2) using a microemulsion method and an investigation of its photocatalytic activity for the degradation of Acid Red 27 in distilled water under UV-irradiation is reported. The prepared Ag/TiO2 is characterized using transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The size of the Ag nanoparticles is around 5–15?nm, with almost uniform distribution on the TiO2 particles. The efficiency of the photocatalytic process is evaluated to establish the optimum conditions, found to be at 2?wt% of Ag loading on TiO2, catalyst dosage of 400?mg?L?1, and calcination temperature of 300°C. Complete decolorization of the dye solution on Ag/TiO2 was observed in 20?min of UV irradiation in the optimum conditions.  相似文献   

9.
Tetracycline (TC), one of the most common antibiotics, is often poorly bio-degraded in conventional wastewater treatment plants. In this study, the sonocatalytic degradation of TC was investigated using TiO2 nano-particles as catalyst. The effect of pH, initial TC concentrations, reaction times, and H2O2 concentrations were evaluated. The efficacy of ultrasonic irradiation alone in the removal of this pollutant was negligible but removal efficiency increased upon addition of TiO2 up to 250 mg L?1; increase of pH and initial TC concentration attenuated TC degradation. Addition of H2O2 raised the removal efficiency so that complete removal of TC was achieved within 75 min.  相似文献   

10.
The photocatalytic degradation of diazinon was studied over TiO2 catalysts. The kinetics obtained demonstrated that powder titania (t1/2 = 9.7 min) was more efficient compared to pure titania thin film catalysts (t1/2 = 29.4 min). Mineralization of organic carbon to CO2 after 360 min of irradiation was found to be 75% while heteroatoms (P, S, N) were mineralized into phosphate, sulfate and nitrate ions, respectively. A microtox test was performed to evaluate the toxicity of solutions treated by catalysts. Illumination of diazinon in the presence of TiO2 gave rise to several intermediates that have been identified by means of solid phase extraction and gas chromatography-mass spectrometry, while a simple degradation pathway is proposed.  相似文献   

11.
Titanium dioxide (TiO2) nanoparticles possess the potential to coexist with Copper (Cu2+) in soil. The individual and combined toxicity of these two chemicals was evaluated using the bacterium Bacillus subtilis, a known soil model bacterium. Cu2+ (6.25–50?µg?mL?1) alone produced toxicity to bacteria as evidenced by the decreased cell viability and deceased α-amylase production. The addition of TiO2 (50?mg?mL?1) enhanced the Cu2+-induced decrease in cell viability but elevated amylase activity. TiO2 did not markedly affect the growth rate and lag period. A primary cause of TiO2 increasing Cu2+ toxicity is presumed to be associated with hydroxyl radical formation, while increased amylase activity is considered to arise from Cu2+ facilitating TiO2 degradation ability.  相似文献   

12.
13.
The photocatalytic degradation of the herbicide isoproturon under solar light was investigated in aqueous solution containing a Bi–TiO2/zeolite photocatalyst. The catalysts were characterized using X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The effect of Bi–TiO2 loading onto the zeolite support and influence of the parameters such as catalyst amount, pH, and initial concentration of isoproturon on the degradation rate were evaluated. The recycling ability of the catalyst was found to be sustainable for elongated periods. The high activity of the Bi–TiO2/zeolite was attributed to its absorptivity of visible light and its high adsorption capacity for the pollutant molecules.  相似文献   

14.
The photodegradation of Acid blue 74 in aqueous solution employing a H2O2/ultraviolet system in a photochemical reactor was investigated. The kinetics of decolorization were studied by application of a kinetic model. The results show that the reaction of decolorization followed pseudo-first order kinetics. We demonstrate that there is an optimum H2O2 concentration, at which the rate of the decolorization reaction is maximum. Irradiation at 253.7 nm of the dye solution in the presence of H2O2 results in complete discoloration after ten minutes of treatment.  相似文献   

15.
Titania (TiO2) has been the focus of attention of researchers since the first demonstration of its capability to generate the photocatalytic splitting of water into hydrogen and oxygen. However, there seems to be a recent surge in the research activity, involving modified TiO2 nanoparticles (NP), which are considered to be more effective due to different physicochemical properties in comparison to unmodified fine particle analogs. Several strategies have been employed to modify TiO2 to reduce recombination rates of photogenerated charge carriers to enhance the optimal functioning of TiO2. Doping with cations and anions and coupling it with another semiconductor are the most well-known modification methods used. Titania nanocomposites are known to have a plethora of applications. Photoexcitation of these particles are seen to be extraordinarily effective in eliciting microbial death which makes it an attractive candidate for the manufacturing of antimicrobial coatings. On the other hand, TiO2 induces the oxidation of various organic refractory compounds like tetracycline, sulfamethazine, and bisphenol. The photo-electrocatalytic oxidation technique which amalgamates the principle of photocatalysis and electrolysis serves as a newer, unswerving, and cost effective water treatment process. In the biomedical arena, use is now acknowledged for the photodynamic therapy of cancer, cell imaging, biological sensors, drug delivery system, and as endonucleases. In the commercial front, it is utilized in creams owing to its small particle size, which facilitates absorption through skin. It is also employed as ultraviolet blocking agents in sunscreen and commonly encountered as a brilliant white pigment in paint due to its brightness, high refractive index and resistance to discoloration. Its use in solar cells has also been reported. This review aims to encompass the new progress of modified TiO2 nanocomposites for efficient applications, emphasizing the future trends of TiO2 in arenas like healthcare, environment, biomedical, food, personal care, and pharmacy and also highlights the commercial implications of this promising nanomaterial.  相似文献   

16.
The cytotoxicity of 13 and 22 nm aluminum oxide (Al2O3) nanoparticles was investigated in cultured human bronchoalveolar carcinoma-derived cells (A549) and compared with 20 nm CeO2 and 40 nm TiO2 nanoparticles as positive and negative control, respectively. Exposure to both Al2O3 nanoparticles for 24 h at 10 and 25 µg mL?1 doses significantly decreased cell viability compared with control. However, the cytotoxicity of 13 and 22 nm Al2O3 nanoparticles had no difference at 5–25 µg mL?1 dose range. The cytotoxicity of both Al2O3 nanoparticles were higher than negative control TiO2 nanoparticles but lower than positive control CeO2 nanoparticles (TiO2 < Al2O3 < CeO2). A real-time single cell imaging system was employed to study the cell membrane potential change caused by Al2O3 and CeO2 nanoparticles using a membrane potential sensitive fluorescent probe DiBAC4(3). Exposure to the 13 nm Al2O3 nanoparticles resulted in more significant depolarization than the 30 nm Al2O3 particles. On the other hand, the 20 nm CeO2 particles, the most toxic, caused less significant depolarization than both the 13 and 22 nm Al2O3. Factors such as exposure duration, surface chemistry, and other mechanisms may contribute differently between cytotoxicity and membrane depolarization.  相似文献   

17.
A titanium dioxide film on a graphite substrate was synthesized by chemical bath deposition from TiCl4 as precursor and with the surfactant cetyl trimethyl ammonium bromide as a linking and assembling agent. Silver was loaded on the TiO2 film by electrodeposition at 0.025?A. Water contaminated with Escherichia coli was disinfected under sunlight irradiation by photolysis (Lys), photocatalysis (PC), photoelectrocatalysis (PEC), and electrocatalysis (EC). The highest rate constant, k, was achieved with EC; k was 5.1?×?10?2 colony forming units (CFU) mL?1?min?1. However, auto-oxidation of Ag occurred during EC and PEC. Meanwhile, the rate constant of disinfection by means of PC was lower than EC and PEC, and k was 3.82?×?10?2 CFU?mL?1?min?1. Nevertheless, the auto-oxidation of Ag in the Ag–TiO2/graphite tablet did not occur during the disinfection process.  相似文献   

18.
One of the major problems of textile wastewater is the presence of dye materials, because colour is visible to the public even if the dye concentration is lower than other pollutants, and needs therefore to be removed from the wastewater before it is discharged. Techniques based on “advanced oxidative processes” such as photocatalysed oxidation seem to be very promising for industrial wastewater treatment, especially for decolourization of textile effluents. In this work, we describe the photocatalytic degradation of the textile dye Basic Red 18 (BR 18) in aqueous solution using two different types of TiO2 as photocatalyst: Degussa P25 (80% anatase) and Framitalia (100% anatase). Photooxidation of BR 18 was followed by HPLC analysis, and kinetic parameters were evaluated in order to optimise the treatment procedure. The results obtained in this work showed that the colour became virtually zero and the chemical oxygen demand (COD) is strongly reduced at the end of the treatment. The obtained results are compared with the efficiency of decolourization using the H2O2/UV System. Finally, marine mussel test was used to evaluate the efficiency of photocatalytic oxidation with TiO2 in terms of ecotoxicity. A significant reduction of cumulative mortality was observed for the treated effluent.  相似文献   

19.
We report a facile approach for preparing mesoporous boron-doped TiO2 materials by combining the sol?Cgel process with the dehydration of glucose. Specifically a high surface carbon material was formed by dehydration of glucose, then used as template. This material and the TiO2 dry gel were calcinated to produce porous TiO2. The as-synthesized boron-doped TiO2 was in pure anatase crystallite phase with high surface area. X-ray photoelectron spectroscopy (XPS) results showed that boron was incorporated into the anatase TiO2 lattice to form TiO2?xBx. The absorption spectra of TiO2?xBx extended into the visible region to 460?nm. The TiO2?xBx exhibited much higher photocatalytic activity on phenol degradation than pure TiO2. It showed that the phenol degradation by-products of TiO2?xBx were different from that of pure TiO2. Mechanism of the photocatalytic degradation of phenol at TiO2?xBx was also proposed.  相似文献   

20.
The photocatalytic formation of hydrogen peroxide over ZnO and TiO2thin films has been investigated in aqueous phase in the presence of molecular oxygen as an electron acceptor. These films are highly porous and showed enhanced catalytic activity in the photochemical formation of hydrogen peroxide. The amount of H2O2formed during 2 hour light illumination is 4–6 μM and the rates of formation of hydrogen peroxide of both the films are almost comparable. The yield of hydrogen peroxide increases with the increase in irradiation time and a trend of steady state concentration of H2O2is observed in the case of TiO2thin film. Photodissolution of ZnO particles is observed in some extent during the process of prolonged UV light illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号