首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Fe0/厌氧微生物体系降解2,4,6-三氯酚特性研究   总被引:1,自引:0,他引:1  
通过摇床间歇实验,研究了厌氧微生物与零价铁(Fe0)联合体系降解2,4,6-三氯酚(TCP)的特性,结果表明,在pH 7.5,35℃,150 r/min,Fe0 10 g/L条件下,TCP初始浓度为30 mg/L时,TCP降解的拟一级反应速率常数为0.0207 h-1,添加少量碳源可达到0.0390 h-1,其降解速率是前者的1.88倍;添加碳源的体系在220 h内连续多次投加TCP降解率都达到80%以上,而不加碳源的体系在第2次投加TCP后降解率就只有30%左右;添加不同碳源,降解速率不同;添加2-溴乙烷磺酸钠(BESA)以及SO2-4、NO-3和S2-对TCP降解有不同的抑制作用。  相似文献   

2.
土壤中零价铁还原3-氯硝基苯的作用   总被引:3,自引:2,他引:1  
利用零价铁在常温常压下对土壤中的3-氯硝基苯的还原,对反应物和产物随时间的变化及反应的各个影响因素进行了研究。实验结果表明,零价铁能够有效地将3-氯硝基苯还原为3-氯苯胺,反应过程中没有检测到脱氯产物。其反应速率随铁粉用量、反应体系含水量的增加以及反应温度的升高而升高,随土壤初始pH值的升高而降低。在土壤中3-氯硝基苯含量约为2.5×10-6 mol/g,铁粉使用量为25 mg/g,反应体系中含水量为0.75 mL/g,pH值为6.8时,在恒温生化培养箱(25±1)℃反应5 h后,3-氯硝基苯的还原率达到92.75%。  相似文献   

3.
超声波-光催化氧化降解邻氯苯酚的研究   总被引:1,自引:0,他引:1  
对超声波-光催化氧化降解邻氯苯酚(2-cp)进行了研究,探讨了溶液初始pH值、TiO2投加量、H2O2投加量和溶液初始浓度对邻氯苯酚降解率的影响.并对几种不同处理方法降解邻氯苯酚的结果进行了对比.结果表明,超声波和紫外光的协同效果明显,在相同的反应时间内,超声波能够明显提高光催化降解邻氯苯酚的降解率.超声波和紫外光连用,具有良好的工业应用前景.  相似文献   

4.
研究了溶液中4-氯酚(4CP)、2-氯酚(2CP)、4-氯-3-甲基酚(4C3MP)、2,4-二氯酚(2,4-DCP)、2,4,6-三氯酚(2,4,6-TCP)和五氯酚(PCP)的微波辅助光催化降解(MW/PCO).结果表明,6种氯酚(CPs)光降解速率与分子中Cl原子取代的数目、位置等分子结构性质有关,单氯酚比多取代氯酚易光解.MW/PCO降解4CP的主要中间产物为苯酚、氯苯、对苯醌、对苯二酚等,降解PCP的主要中间产物为2,3,5,6-四氯对苯醌、2,3,4,6-四氯对苯二酚、四氯酚.CPs降解的机制是紫外光降解和羟基自由基 (·OH)亲电子加成脱氯过程.  相似文献   

5.
超声波/纳米铁协同降解氯代苯酚的试验   总被引:8,自引:0,他引:8  
通过间歇试验对超声波/纳米铁协同降解氯代苯酚(CPs)废水进行了研究,结果表明,超声波/纳米铁协同对CPs的降解率明显高于单纯超声波和单纯纳米铁的降解率;协同体系、单纯超声波和单纯纳米铁降解CPs均符合准一级反应动力学,协同体系的降解速率较单纯超声波提高了5.1-5.6倍,较单纯纳米铁提高了17.7~21倍,并且比它们的几何迭加值高4倍以上;氯代苯酚降解的准一级速率常数和降解率满足以下规律:PEP〉2,4,5-TCP〉2,4-DCP〉3-CP;探讨了混合废水的降解:在混合废水体系中,结构易裂解的优先降解,然后为浓度高的优先降解。  相似文献   

6.
超声波/纳米铁协同降解氯代苯酚的试验   总被引:1,自引:0,他引:1  
通过间歇试验对超声波/纳米铁协同降解氯代苯酚(CPs)废水进行了研究,结果表明,超声波/纳米铁协同对CPs的降解率明显高于单纯超声波和单纯纳米铁的降解率;协同体系、单纯超声波和单纯纳米铁降解CPs均符合准一级反应动力学,协同体系的降解速率较单纯超声波提高了5.1~5.6倍,较单纯纳米铁提高了17.7~21倍,并且比它们的几何迭加值高4倍以上;氯代苯酚降解的准一级速率常数和降解率满足以下规律:PCP>2,4,5-TCP>2,4-DCP>3-CP;探讨了混合废水的降解:在混合废水体系中,结构易裂解的优先降解,然后为浓度高的优先降解。  相似文献   

7.
高频超声辐照降解水中4—氯酚的研究   总被引:5,自引:0,他引:5  
本文着重探讨了高频超声波(1.7MHz)降解4-氯酚的反应过程和反应机理,研究了高频超声波降解4-氯酚的效果,并讨论了4-氯酚初始浓度等因素对降解效果的影响。高频超声波降解4-氯酚为一级反应,超声波空化效应在降解过程中起主导作用。  相似文献   

8.
钯/铝双金属体系对3-氯酚的脱氯降解   总被引:1,自引:0,他引:1  
研究了钯/铝双金属体系对水相中3-氯酚的催化脱氯降解效果,通过置换沉积制备了钯/铝双金属颗粒,考察了该双金属颗粒的稳定性以及溶液pH和钯负载量对脱氯效果的影响。结果表明,pH在4.0以下的酸性条件,钯负载量在1.43%时,可实现水相中3-氯酚的有效脱氯,反应30 min后0.389 mmol/L的3-氯酚转化率可达99%以上,产物主要为苯酚,而钯/铝颗粒在重复测试中能保持较好的稳定性,这与铝基材表面自发形成的氧化膜有关。钯/铝材料表征的结果表明,钯颗粒高度分散在铝基材表面,并极大地提高了铝基材的表面积,从而有助于后续的脱氯反应。  相似文献   

9.
本文着重探讨了高频超声波 (1.7MHz)降解 4 氯酚的反应过程和反应机理 ,研究了高频超声波降解 4 氯酚的效果 ,并讨论了 4 氯酚初始浓度等因素对降解效果的影响。高频超声波降解 4 氯酚为一级反应 ,超声波空化效应在降解过程中起主导作用  相似文献   

10.
针对水中含氯有机物的脱氯降解,制备了Fe/Cu双金属纳米颗粒,并引入维生素B12,研究铜负载率和维生素B12的剂量对以五氯酚为典型污染物的脱氯效果。结果表明:维生素B12和纳米零价铜能够有效提升五氯酚的脱氯速率及脱氯程度,脱氯率从4.52%增加到78.55%,降解产物从四氯酚进一步降解为苯酚。实验发现增加铜负载率可使双金属比表面积增大,催化活性位增多;增加维生素B12浓度可促进体系电子传递,使体系还原反应活性提升。铜负载率和维生素B12浓度过大均会使体系反应速率减缓甚至抑制。实验优化铜负载率为10%(质量分数),维生素B12浓度为20 mg·L~(-1)。探讨纳米零价铜和维生素B12的催化机理,以期对降解含氯有机物提供可操作性的参考。  相似文献   

11.
Zhang W  Quan X  Wang J  Zhang Z  Chen S 《Chemosphere》2006,65(1):58-64
The Ni-Fe bimetallic particles have been laboratory prepared using sodium borohydride (NaBH4) as the reductant to reduce Ni2+ and Fe2+ in aqueous solution simultaneously, and characterized by TEM, XRD, BET and XPS. The particles were proved to be nanoscale amorphous alloy with an average diameter of about 30 nm and a BET surface area of 20.9 m2 g(-1). Experiments for dechlorination of pentachlorophenol (PCP) by the Ni-Fe bimetallic nanoscale particles in aqueous solutions were carried out under the enhancement of ultrasound. Major factors that influence the dechlorination efficiency, such as initial pH value, Ni content in the Ni-Fe particles, and output power of ultrasonic irradiation, were investigated. The results indicated that Ni-Fe nanoscale bimetallic particles were very effective for the dechlorination of PCP. Dechlorination efficiency was 46% in 30 min under the optimal condition without assistance of ultrasound, whereas it increased to 96% when ultrasonic irradiation was present. Initial pH value showed apparent effect on the dechlorination. As the pH varied from acidic condition to neutral condition, the dechlorination efficiency decreased dramatically. In addition, the dechlorination efficiency was improved with increased Ni/Fe ratio and ultrasonic output power. Less chlorinated phenols including tetrachlorophenol, trichlorophenol, dichlorophenol, monochlorophenol were formed during the initial reaction, and phenol was determined by GC-MS as sole product in the end of reaction.  相似文献   

12.
Graham N  Jiang CC  Li XZ  Jiang JQ  Ma J 《Chemosphere》2004,56(10):949-956
This paper presents information concerning the influence of solution pH on the aqueous reaction between potassium ferrate and phenol and three chlorinated phenols: 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP). The redox potential and aqueous stability of the ferrate ion, and the reactivity of dissociating compounds, are known to be pH dependent. Laboratory tests have been undertaken over a wide range of pH (5.8-11) and reactant concentrations (ferrate:compound molar ratios of 1:1 to 8:1). The reactivity of trichloroethylene was also investigated as a reference compound owing to its non-dissociating nature. The extent of compound degradation by ferrate was found to be highly pH dependent, and the optimal pH (maximum degradation) decreased in the order: phenol/CP, DCP, TCP; at the optimal pH the degree of degradation of these compounds was similar. The results indicate that for the group of phenol and chlorophenols studied, the presence of an increasing number of chlorine substituent atoms corresponds to an increasing reactivity of the undissociated compound, and a decreasing reactivity of the dissociated compound.  相似文献   

13.
考察了pH值对“Fe^0一厌氧微生物”体系降解2,4,6,一三氯酚(2,4,6.TCP)效果的影响,结果表明:pH值是影响“Fe^0-厌氧微生物”体系降解2,4,6-TCP效果的重要参数,初始pH值直接影响微生物活性和铁腐蚀,进而影响过程pH值变化,反过来又影响铁腐蚀和微生物活性,pH7.0~9.0的中性偏碱范围较适于厌氧微生物生长。Fe^0与微生物对目标污染物的降解具有协同促进作用,其协同促进机制表现在3方面:Fe^0与微生物对体系过程pH值具有互补调节作用,可将体系的pH值调节值适于微生物生长的中性范围;Fe^0腐蚀产生的Fe2+和H2可为微生物代谢提供电子对和营养物质,从而促进生物还原脱氯的进行;Fe^0的腐蚀过程直接对氯代有机物还原脱氯,而微生物又可促进Fe^0腐蚀。  相似文献   

14.
Sequential UV-biological degradation of chlorophenols   总被引:2,自引:0,他引:2  
Tamer E  Hamid Z  Aly AM  Ossama el T  Bo M  Benoit G 《Chemosphere》2006,63(2):277-284
The sequential UV-biological degradation of a mixture of 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) was first tested with each pollutant supplied at an initial concentration of 50 mg l(-1). Under these conditions, the chlorophenols were photodegraded in the following order of removal rate: PCP>TCP>DCP>CP with only CP and DCP remaining after 40 h of irradiation. The remaining CP (41 mg l(-1)) and DCP (13 mg l(-1)) were then completely removed by biological treatment with an activated sludge mixed culture. Biodegradation did not occur in similar tests conducted with a non-irradiated mixture due to the high microbial toxicity of the solution. UV treatment lead to a significant reduction of the phytotoxicity to Lipedium sativum but no further reduction of phytotoxicity was observed after biological treatment. Evidence was found that the pollutants were partially photodegraded into toxic and non-biodegradable products. When the pollutants were tested individually (initial concentration of 50 mg l(-1)), PCP, TCP, DCP, 4-CP were photodegraded according to first order kinetic model (r2>99) with half-lives of 2.2, 3.3, 5.7, and 54 h, respectively. The photoproducts were subsequently biodegraded. This study illustrates the potential of UV as pre-treatment for biological treatment in order to remove toxicity and enhance the biodegradability of organic contaminants. However, it also shows that UV treatment must be carefully optimized to avoid the formation of toxic and/or recalcitrant photoproducts and results from studies conducted on single contaminants cannot be extrapolated to mixtures.  相似文献   

15.
四氯化碳的生产和使用,给人类带来了较大危害.为此,采用纳米铁粉这一新方法对其进行脱氯处理.试验以纳米级铁粉对四氯化碳的脱氯率为考察指标,选用L25(56)正交试验方案,考察了降解介质的初始pH值、纳米铁粉的质量、降解温度、摇床转速和脱氯时间5个影响因素.结果表明,pH值这一因素有极显著影响;在得出的纳米铁粉对四氯化碳脱氯的最佳工艺条件下,获得了99.5%的脱氯率,为有机氯化物脱氯开辟了一条新途径.  相似文献   

16.
Abstract

The dechlorination of 2,4,6‐trichlorophenol (TCP) in municipal sewage sludge with a chlorophenol (CP)‐adapted consortium was investigated. Results show that dechlorination rates differed according to the source of the sludge samples used in the batch experiments. No significant differences in 2,4,6‐TCP dechlorination were observed following treatment with inoculum at densities ranging from 10% to 50% (V/V), but a significant delay was noted at 5% (V/V) density. Overall, results show that the higher the 2,4,6‐TCP concentration, the slower the dechlorination rate. The addition of acetate, lactate, pyruvate, vitamin B12 or manganese dioxide did not results in a significant change in 2,4,6‐TCP dechlorination. Data collected from a bioreactor experiment revealed that pH 7.0 and a total solid concentration of 10 g/L were optimal for dechlorination. Dechlorination rates decreased significantly at higher agitation speeds. 2,4,6‐TCP dechlorination was enhanced under methanogenic conditions, but it was inhibited under denitrifying and sulfate‐reducing conditions.  相似文献   

17.
研究了超声波/零价铁(US/Fe^0)工艺对水中双酚A(BPA)的降解效果及影响因素。结果表明,US/Fe^0工艺可以有效降解水中的BPA,具有协同作用,且降解过程符合一级动力学规律;Fe^0具有促进和抑制的双重作用;超声功率越大,越有利于BPA的降解;初始浓度较低时,BPA的降解效果较好;弱酸性条件有利于BPA的降解;加入一定量的自由基捕获剂(正丁醇)可以抑制BPA的降解;联合作用2h后,TOC的去除率较低,说明其矿化程度不完全。  相似文献   

18.
A disappearance model for the prediction of trichlorophenol ozonation   总被引:3,自引:0,他引:3  
Chu W  Wong CC 《Chemosphere》2003,51(4):289-294
The disappearance and modeling of the ozonation of 2,4,6-trichlorophenol (TCP) was studied under different initial TCP concentrations and initial pH levels. The ozonation of TCP was found to follow a pseudo-first-order reaction. The degradation rates increased with the initial pH, and decreased with initial TCP concentration. 2,6-Dichlorohydroquinone was identified as the major intermediate, indicating that dechlorination and hydroxylation co-occurred during TCP ozonation. A model was proposed to quantitatively predict the pseudo-first-order rate constants under different initial TCP concentration and different initial pH levels. The proposed model can successfully describe the reaction; therefore another practical equation was proposed to predict the TCP removal rate at any detention time, which has high potential for practical applications and reactor design.  相似文献   

19.
Observations of 2,4,6-trichlorophenol degradation by ozone   总被引:7,自引:0,他引:7  
Graham N  Chu W  Lau C 《Chemosphere》2003,51(4):237-243
The aqueous reactivity of 2,4,6-trichlorophenol (TCP) with ozone has been studied at laboratory-scale using a simple gas bubble/liquid contacting system. Degradation rate constants were measured directly and found to be 7.6 and 77.2 M(-1)s(-1) at pH 2 and 7.5, respectively. At pH 7.5, 10 min of ozonation ( identical with 15 mM ozone consumption) achieved a 90% degradation of TCP, which corresponded to the release of approximately 2 mol Cl(-) per mol TCP. The presence of hydrogen peroxide in solution did not significantly increase the TCP degradation but increased the overall dechlorination to 2.7 mol Cl(-) per mol TCP. The presence of humic acid (HA) in solution was found to enhance the degradation rate of TCP at low relative HA concentrations (<0.6 g/g HA:TCP), but to reduce the rate at higher HA concentrations.  相似文献   

20.
Doong RA  Lai YL 《Chemosphere》2006,64(3):371-378
The dechlorination of tetrachloroethylene (PCE) by zerovalent iron (Fe(0)) in the presence of metal ions and humic acid was investigated. In the absence of metal ion and humic acid, 64% of the initial PCE was dechlorinated after 125 h with the production of ethane and ethene as the major end products. The dechlorination followed pseudo-first-order kinetics and the normalized surface rate constant (k(SA)) for PCE dechlorination was (3.43+/-0.61)x10(-3)lm(-2)h(-1). Addition of metal ions enhanced the dechlorination efficiency and rate of PCE, and the enhancement effect followed the order Ni(II)>Cu(II)>Co(II). The k(SA) for PCE dechlorination in the presence of metal ions were 2-84 times higher than that in the absence of metal ions. X-ray photoelectron spectroscopy (XPS) showed that Cu(II) and Ni(II) were reduced by Fe(0) to zerovalent metals, and resulted in the formation of bimetallic system to accelerate the dechlorination reaction. On the contrary, humic acid out-competed the reactive sites on iron surface with PCE, and subsequently decreased the dechlorination efficiency and rate of PCE by Fe(0). However, the reactivity of Fe(0) for PCE dechlorination in the presence of metal ions and humic acid increased by a factor of 3-161 when compared to the iron system containing humic acid alone. Since humic acid and metal ions are the most often found co-existing compounds in the contaminated aquifers with chlorinated hydrocarbons, results obtained in this study is useful to better understand the feasibility of using Fe(0) for long-term application to the remediation of contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号