首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
安全科学   2篇
环保管理   1篇
综合类   1篇
污染及防治   8篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2002年   1篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 515 毫秒
1.

Introduction

The purpose of this study was to develop an integrated methodology that links occupant injury risk functions, estimated in the laboratory, with real world medical treatment costs by using the abbreviated injury score (AIS). Using our model, the expected medical treatment costs for crash injuries to various body regions and of different severities can be investigated.

Methods

First, the simulation results are compared with NHTSA crash data. We used a modified kinematics simulation model that incorporates an F = Eb function as a supplement to the previous Steffan's model to obtain a more accurate acceleration history a(t). Second, head injury criteria HIC36 can be calculated from a(t), and we use the injury probability P as a function of HIC36, as proposed by Kuppa, to obtain the injury risk function for various AIS values. Third, medical treatment cost models for various AIS values can be calculated by using a regression cost model with real world data. Finally, the injury risk function and medical treatment cost models are linked through AIS values. We establish an integrated methodology and predict medical costs and car safety data using real world police reports, medical treatment costs, and laboratory simulation results.

Results

Using head injuries in frontal crashes as an example, we focus on simulation parameters for different vehicle models, with and without airbags. We specifically examine impact closing speed, Delta-V, and impact directions.

Conclusion

Simulation results can be used to supplement insufficient real crash data, in particular ΔV, and injury risk results from police crash reports.

Impact on industry

The proposed integrated methodology may provide the vehicle industry with a new safety assessment method. Real crash data coupling provides consumers with more realistic and applicable information.  相似文献   
2.
Doong RA  Lai YL 《Chemosphere》2006,64(3):371-378
The dechlorination of tetrachloroethylene (PCE) by zerovalent iron (Fe(0)) in the presence of metal ions and humic acid was investigated. In the absence of metal ion and humic acid, 64% of the initial PCE was dechlorinated after 125 h with the production of ethane and ethene as the major end products. The dechlorination followed pseudo-first-order kinetics and the normalized surface rate constant (k(SA)) for PCE dechlorination was (3.43+/-0.61)x10(-3)lm(-2)h(-1). Addition of metal ions enhanced the dechlorination efficiency and rate of PCE, and the enhancement effect followed the order Ni(II)>Cu(II)>Co(II). The k(SA) for PCE dechlorination in the presence of metal ions were 2-84 times higher than that in the absence of metal ions. X-ray photoelectron spectroscopy (XPS) showed that Cu(II) and Ni(II) were reduced by Fe(0) to zerovalent metals, and resulted in the formation of bimetallic system to accelerate the dechlorination reaction. On the contrary, humic acid out-competed the reactive sites on iron surface with PCE, and subsequently decreased the dechlorination efficiency and rate of PCE by Fe(0). However, the reactivity of Fe(0) for PCE dechlorination in the presence of metal ions and humic acid increased by a factor of 3-161 when compared to the iron system containing humic acid alone. Since humic acid and metal ions are the most often found co-existing compounds in the contaminated aquifers with chlorinated hydrocarbons, results obtained in this study is useful to better understand the feasibility of using Fe(0) for long-term application to the remediation of contaminated sites.  相似文献   
3.
This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO2 that is doped with Cu2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced.

Implications: The CuO-doped anatase TiO2 powder was successfully synthesized in this study by a sol–gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.  相似文献   

4.
5.
6.
Doong RA  Sun YC  Liao PL  Peng CK  Wu SC 《Chemosphere》2002,48(2):237-246
The contamination of organochlorine pesticides (OCPs) in sediments from selected rivers in Taiwan was investigated to evaluate the pollution potentials and hazard in river sediments. Da-han River and Erh-jen River were selected as the target rivers due to their serious pollution. A total of 40 surface sediment samples were collected at five sampling stations along the rivers. Results showed that the concentrations of various pesticides in sediments were in the range of 0.57-14.1 ng/g for sigmaHCH, 0.05-0.15 ng/g for aldrin, 0.12-5.8 ng/g for dieldrin, 0.22-0.64 for endrin, 0.24-6.37 ng/g for endosulfan and 0.21-8.81 ng/g for EDDT (p,p'-DDD, p,p'-DDE, p,p'-DDT). Among the OCPs, sigmaHCH, endosulfan and sigmaDDT were the most dominant compounds in the river sediments. Endosulfan sulfate was the most frequent detected compound in the sediments from the selected rivers. Also, sigmaDDT, dieldrin and beta-HCH were in abundance. Different contamination patterns between the selected river sediments were also observed. Da-han River was mainly contaminated with endosulfan sulfate and sigmaDDT. Whereas the main pesticides in Erh-jen River were beta-HCH and sigmaDDT. Among the cyclodiene compounds, dieldrin was in abundance in most of the sediments. Moreover, the frequencies of detection of the metabolites were higher than those of parent compounds, depicting that the sediments have contaminated for a long time. The results obtained in this study showed that there still exist a variety of OCP residues in the river sediments in Taiwan.  相似文献   
7.
Parshetti GK  Doong RA 《Chemosphere》2012,86(4):392-399
In this study, the dechlorination of chlorinated hydrocarbons including trichloroethylene (TCE), tetrachloroethylene (PCE) and carbon tetrachloride (CT) by bimetallic Ni/Fe nanoparticles immobilized on four different membranes was investigated under anoxic conditions. Effects of several parameters including the nature of membrane, initial concentration, pH value, and reaction temperature on the dechlorination efficiency were examined. The scanning electron microscopic images showed that the Ni/Fe nanoparticles were successfully immobilized inside the four membranes using polyethylene glycol as the cross-linker. The agglomeration of Ni/Fe were observed in poly(vinylidene fluoride), Millex GS and mixed cellulose ester membranes, while a relatively uniform distribution of Ni/Fe was found in nylon-66 membrane because of its hydrophilic nature. The immobilized Ni/Fe nanoparticles exhibited good reactivity towards the dechlorination of chlorinated hydrocarbons, and the pseudo-first-order rate constant for TCE dechlorination by Ni/Fe in nylon-66 were 3.7-11.7 times higher than those in other membranes. In addition, the dechlorination efficiency of chlorinated hydrocarbons followed the order TCE > PCE > CT. Ethane was the only end product for TCE and PCE dechlorination, while dichloromethane and methane were found to be the major products for CT dechlorination, clearly indicating the involvement of reactive hydrogen species in dechlorination. In addition, the initial rate constant for TCE dechlorination increased upon increasing initial TCE concentrations and the activation energy for TCE dechlorination by immobilized Ni/Fe was 34.9 kJ mol−1, showing that the dechlorination of TCE by membrane-supported Ni/Fe nanoparticles is a surface-mediated reaction.  相似文献   
8.
Doong RA  Chang SM 《Chemosphere》2000,40(12):1427-1433
An investigation involving the supplement of different concentrations of substrates and microorganisms was carried out under anaerobic condition to assess the feasibility of bioremediation of carbon tetrachloride (CCl4) with the amendment of low concentrations of auxiliary substrate and microorganisms. The concentrations of substrate and microorganisms ranged from 10 to 100 mg/l and from 3.7 × 104 to 3.7 × 106 cell/ml, respectively. The biotransformation rate of CCl4 increased progressively with the increase in the concentrations of the substrate and microorganisms. In the low biomass-amended system (3.7 × 104cells/ml), 28–71% and 57–96% of CCl4 removals were exhibited when 10–100 mg/l of acetate or glucose was supplemented, respectively, whereas nearly complete degradation of CCl4 was observed in the heavily inoculated systems (3.7 × 106 cells/ml). An addition of electron donor in the low microbial activity batches enhanced greater efficiency in dechlorination than in the high microbial activity batches. The second-order rate constants ranged from 0.0059 to 0.0092 l/mg/day in high biomass input system, while a two- to four-fold increase in rate constant was obtained in the low microbial activity system. This study indicates that biomass was the more important environmental parameter than substrate affecting the fate of CCl4. The addition of auxiliary substrates was effective only in low biomass-amended batches (0.56 mg-VSS/l) and diminished inversely with the increase of microbial concentration.  相似文献   
9.
Maithreepala RA  Doong RA 《Chemosphere》2008,70(8):1405-1413
In this study, the cell-mediated and abiotic reduction of carbon tetrachloride (CCl(4)) by biogenic iron species produced from the reductive dissolution of ferrihydrite in the presence of Geobacter sulfurreducens and copper ions (Cu(II)) were investigated. 9,10-Anthraquinone-2,6-disulfonate (AQDS), serving as a surrogate of natural organic matters and an electron shuttling compound, was added to enhance the efficiency of biological reduction of the solid Fe(III) minerals. G. sulfurreducens drove the reduction of CCl(4), primarily through the formation of biogenic surface-bound iron species produced from the reductive dissolution of ferrihydrite, in the presence of 10microM AQDS. The pseudo-first-order rate constant (k(obsCT)) for CCl(4) transformation in the presence of ferrihydrite was 3.0 times higher than that resulting from the use of G. sulfurreducens alone. Addition of 0.5mM Cu(II) slightly inhibited both the growth of G. sulfurreducens and the production of biogenic Fe(II). However, the k(obsCT) values for CCl(4) transformation in ferrihydrite suspensions containing G. sulfurreducens and 0.3-0.5mM Cu(II) were 2.1-4.2 times higher than that observed in the absence of Cu(II). X-Ray powder diffraction analysis indicated that the added Cu(II) reacted with the biogenic Fe(II) ions to produce catalytic cuprous ions (Cu(I)) and secondary iron oxide minerals such as magnetite and goethite, resulting in accelerating the chemical transformation efficiency and rate of CCl(4) under iron-reducing conditions.  相似文献   
10.
Agrobacterium radiobacter MTCC 8161 completely decolorized the Crystal Violet with 8 hr (10 mg/L) at static anoxic conditions. The decreased decolorization capability by A. radiobacter was observed, when the Crystal Violet concentration was increased from 10 to 100 mg/L. Semi-synthetic medium containing 1% yeast extract and 0.1% NH4Cl has shown 100% decolorization of Crystal Violet within 5 hr. A complete degradation of Crystal Violet by A. radiobacter was observed up to 7 cycles of repeated addition (10 mg/L). When the effect of increasing inoculum concentration on decolorization of Crystal Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine N-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process. The intermediates formed during the degradation of Crystal Violet were analyzed by gas chromatography and mass spectroscopy (GC/MS). It was detected the presence of N,N,N′,N′′-tetramethylpararosaniline, [N; N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N; N-dimethylaminobenzaldehyde, 4-methyl amino phenol and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil fertility and for four kinds of plants (Sorghum bicolor, Vigna radiata, Lens culinaris and Triticum aestivum) which are most sensitive, fast growing and commonly used in Indian agriculture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号