首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature.  相似文献   

2.
Chemical fractionation of phosphorus in stabilized biosolids   总被引:2,自引:0,他引:2  
Three chemicals-ferrous sulfate (FeSul), calcium oxide (CaO), and aluminum sulfate (alum)-were applied at different rates to stabilize P in fresh, anaerobically digested biosolids (FBS) obtained from an activated sewage treatment plant. A modified Hedley fractionation procedure was used to assess P forms in these sludge-borne materials and in a biosolids compost (BSC) prepared from the same FBS. Each biosolids material exhibited a unique pattern of P distribution among fractions. The most available P forms, namely: (i) water-soluble P (WSP); (ii) membrane-P; and (iii) NaHCO(3)-P, were stabilized by small rates of each of the chemicals; but the P transformation into more stable forms depended on the type of chemical added. The stabilized P forms were enhanced by high rates of CaO and FeSul, but were reduced by high rates of alum. The organic P (P(o)) in the first three fractions of the FeSul- and alum-stabilized biosolids was enhanced by the chemical addition, and P(o) transformation from NaOH-P(o) into NaHCO(3)-P(o) was found in calcium-stabilized biosolids. A positive relationship was found between NaHCO(3)-P(o) and the NaHCO(3)-extracted organic C in all chemically stabilized biosolids. One-step extraction by NaHCO(3) or NaOH underestimated P extraction compared to the stepwise extraction. The reported results are consistent with solid-state P speciation reported earlier and contribute important information for optimizing biosolids stabilization to reduce P loss after incorporation in soils and for maximizing soil capacity to safely store pre-stabilized biosolids.  相似文献   

3.
An investigation was conducted to examine aerobic digestion of the phosphorus-laden sludge produced at the Regina Wastewater Treatment Plant and feasibility of land use of this sludge combined with the dewatered anaerobically digested primary sludge from this plant. Experimental studies showed that aerobic digestion can be employed for the stabilization of the chemical sludge. Results of the feasibility analysis showed that mixing the two digested sludges met the heavy metal criteria set by various guidelines for agricultural use, presented the advantage of an increased concentration of nutrients and a decreased concentration of heavy metals, and a longer useful life of the agricultural site compared to using dewatered anaerobically digested primary sludge alone. Land application of the mixed digested sludges would be a more appropriate method of sludge disposal compared to the present practice of landfilling the dewatered sludge and lagooning the chemical sludge.  相似文献   

4.
The National Research Council identified odors as a significant animal emission and highlighted the need to develop standardized protocols for sampling and analysis. The purpose of our study was to compare different odor sampling techniques for monitoring odors emitted from stored swine manure. In our study, odorous headspace air from swine manure holding tanks were analyzed by human panels and analytical techniques. Odorous air was analyzed by human panels using dynamic dilution olfactometry (DDO). Chemical analysis used acid traps for ammonia (NH?), fluorescence for hydrogen sulfide (H?S), and thermal desorption gas chromatography-mass spectrometry for volatile organic compounds (VOCs). Chemical analysis included the use of gas chromatography-olfactometry (GC-O) for determining key odorants. Chemical odorant concentrations were converted to odor activity values (OAVs) based on literature odor thresholds. The GC-O technique used was GC-SNIF. Dilution thresholds measured by different odor panels were significantly different by almost an order of magnitude even though the main odorous compound concentrations had not changed significantly. Only 5% of the key odorous VOCs total OAVs was recovered from the Tedlar bags used in DDO analysis. Ammonia was the only chemical odorant significantly correlated with DDO analysis in the fresh (1 wk) and aged manure. Chemical analysis showed that odor concentration stabilized after 5 to 7 wk and that HS was the most dominant odorant. In aged manure, neither volatile fatty acids (VFAs) nor HS was correlated with any other chemical odorant, but NH, phenols, and indoles were correlated, and phenols and indoles were highly correlated. Correlation of odorant concentration was closely associated with the origin of the odorant in the diet. Key odorants determined by chemical and GC-O included indoles, phenols, NH?, and several VFAs (butanoic, 3-methylbutanoic, and pentanoic acids).  相似文献   

5.
Chemical immobilization is a relatively inexpensive in situ remediation method that reduces soil contaminant solubility, but the ability of this remediation treatment to reduce heavy metal bioavailability and ecotoxicity to soil invertebrates has not been evaluated. Our objectives were to (i) assess the ability of chemical immobilization amendments (municipal sewage sludge biosolids and rock phosphate) to reduce metal bioavailability and toxicity in a toxic metal-contaminated smelter soil and (ii) evaluate soil extraction methods using Ca(NO3)2 solution or ion-exchange membranes coated with diethylenetriaminepentaacetic acid (DTPA) as surrogate measures of metal bioavailability and ecotoxicity. We treated a soil contaminated by Zn and Pb milling and smelting operations and an uncontaminated control soil with lime-stabilized municipal biosolids (LSB), rock phosphate (RP), or anaerobically digested municipal biosolids (SS) and evaluated lethality of the remediated soils to earthworm (Eisenia fetida Savigny). Lime-stabilized municipal biosolids was the only remediation amendment to successfully immobilize lethal levels of Zn in the smelter soil (14-d cumulative mortality < or = 15%). Calcium nitrate-extractable Zn in the lethal Zn smelter soil-amendment combinations was 11.5 to 18.2 mmol/kg, compared with the nonlethal LSB amended soil (0.62 mmol/kg). The Ca(NO3)2-extractable Zn-based median lethal concentration (LC50) of 6.33 mmol/kg previously developed in Zn-spiked artificial soils was applicable in the remediated smelter soils despite a 14-fold difference in total Zn concentration. Chelating ion-exchange membrane uptake among the soils was highly variable (mean CV = 39%) compared with the Ca(NO3)2-extraction (mean CV = 1.9%) and not well related to earthworm toxicity.  相似文献   

6.
Addition of anaerobically digested sewage sludge (biosolids) to soil may improve conditions for phytoremediation of petroleum hydrocarbons (PHCs) through improved soil chemical, biological, and physical properties. A 32-wk greenhouse study investigated three rates of biosolids addition (0, 13.34, and 26.68 g oven-dry biosolids kg(-1) oven-dry soil) and the presence or absence of smooth brome (Bromus inermis Leyss. cv. Carlton) plants on the removal of diesel (3.5 g kg(-1) oven-dry soil) in an industrial, sandy loam soil. Diesel PHCs were divided into two fractions based on equivalent normal straight-chain boiling point ranges (F2: nC10-nC16; F3: nC16-nC34). The addition of biosolids did not increase the extent of PHC degradation but did result in significantly greater first-order decay constants compared to unamended controls. Overall, the presence of plants did not increase the rate or extent of PHC degradation, relative to that observed in unamended, non-vegetated soils. Vegetation was, however, an important factor within the biosolids-amended soils as was observed by a greater extent of PHC degradation. Some of this decrease was attributed to plant-induced removal of biosolids components that were contributing to the F3 fraction. Overall, the low-amendment rate (13.34 g oven-dry biosolids kg(-1) oven-dry soil) was considered to be the most effective treatment because it produced the greatest overall PHC degradation rate (0.226 wk(-1) for total PHCs) and resulted in the greatest recovery of biosolids-derived N by smooth brome (26.6%).  相似文献   

7.
Swine manure is associated with emissions of odor, volatile organic compounds (VOCs) and other gases that can affect air quality on local and regional scales. In this research, a solid phase microextraction (SPME) and novel multidimensional gas chromatography-mass spectrometry-olfactometry (MDGC-MS-O) system were used to simultaneously identify VOCs and related odors emitted from swine manure. Gas samples were extracted from manure headspace using Carboxen/polydimethylsiloxane (PDMS) 85-microm SPME fibers. The MDGC-MS-O system was equipped with two columns in series with a system of valves allowing transfer of samples between columns (heartcutting). The heartcuts were used to maximize the isolation, separation, and identification of compounds. The odor impact of separated compounds was evaluated by a trained panelist for character and intensity. A total of 295 compounds with molecular weights ranging from 34 to 260 were identified. Seventy one compounds had a distinct odor. Nearly 68% of the compounds for which reaction rates with OH* radicals are known had an estimated atmospheric lifetime <24 h.  相似文献   

8.
Processes for managing pathogens   总被引:1,自引:0,他引:1  
Wastewater contains human, animal, and plant pathogens capable of causing viral, bacterial, or parasitic infections. There are several routes whereby sewage pathogens may affect human health, including direct contact, contamination of food crops, zoonoses, and vectors. The range and numbers of pathogens in municipal wastewater vary with the level of endemic disease in the community, discharges from commercial activities, and seasonal factors. Regulations to control pathogen risk in the United States and Europe arising from land application of biosolids are based on the concept of multiple barriers to the prevention of transmission. The barriers are (i) treatment to reduce pathogen content and vector attraction, (ii) restrictions on crops grown on land to which biosolids have been applied, and (iii) minimum intervals following application and grazing or harvesting. Wastewater treatment reduces number of pathogens in the wastewater by concentrating them with the solids in the sludge. Although some treatment processes are designed specifically to inactivate pathogens, many are not, and the actual mechanisms of microbial inactivation are not fully understood for all processes. Vector attraction is reduced by stabilization (reduction of readily biodegradable material) and/or incorporation immediately following application. Concerns about health risks have renewed interest in the effects of treatment (on pathogens) and advanced treatment methods, and work performed in the United States suggests that Class A pathogen reduction can be achieved less expensively than previously thought. Effective pathogen risk management requires control to the complete chain of sludge treatment, biosolids handling and application, and post-application activities. This may be achieved by adherence to quality management systems based on hazard analysis critical control point (HACCP) principles.  相似文献   

9.
Biosolids deep-row incorporation (DRI) provides high levels of nutrients to the reclamation sites; however, additions of N in excess of the vegetation requirements can potentially impair water quality. The effects of anaerobically digested (AD) and lime stabilized (LS) DRI biosolids and inorganic N fertilizer were compared on C and N transformations and transport at a reclaimed mineral sands mining site. Biosolids were applied at 213 and 426 Mg AD biosolids ha(-1) and 328 and 656 Mg LS biosolids ha)(-1) (dry mass), and inorganic N fertilizer was applied at 0 (control) and 504 kg N ha-(-1) yr(-1). Zero tension lysimeters were installed to collect leachate for determination of vertical N transport, and the biosolids seams were analyzed for N and C transformations after 28 mo aging. The leachijng masses from the DRI biosolids treatments were 139 to 291 kg ha(-1) NO3-N, 61 to 243 kg ha(-1) NH4-N, and 61 to 269 kg ha(-1) organic N, while the fertilizer treatment did not differ from the control. Aged biosolids analysis showed that total N lost over the course of 2 yr was 15.2 Mg ha(-1) and 10.9 Mg ha(-1) for LS and AD biosolids, respectively, which was roughly 50% of the N applied. Organic C losses were 81 Mg ha(-1) and 33 Mg ha(-1) for LS and AD biosolids, respectively. Our results indicated that entrenchment of biosolids in coarse-textured media should not be used as a mined land reclamation technique because the anaerobic conditions required to limit mineralization and nitrification cannot be maintained in such permeable soils.  相似文献   

10.
This paper reports on a major study of the incidence of indicator organisms and pathogens found within Class B biosolids within 21 samplings from 18 wastewater treatment plants across the United States. This is the first major study of its kind since the promulgation of the USEPA Part 503 Rule in 1993, and includes samples before and after the Part 503 Rule was promulgated. National distributions collected between 2005 and 2008 show that the incidence of bacterial and viral pathogens in Class B mesophilic, anaerobically digested biosolids were generally low with the exception of adenoviruses, which were more prevalent than enteric viruses. No Ascaris ova were detected in any sample. In contrast, indicator organism numbers were uniformly high, regardless of whether they were bacteria (fecal coliforms) or viruses (phage). Indicators were not correlated with pathogen loads. Historic distributions were collected between 1988 and 2006 at one location in Tucson, AZ. By comparing data collected before and after 1993, the influence of the USEPA Part 503 Rule on indicator and pathogen levels within Class B biosolids can be inferred. In general, the bacterial indicators total and fecal coliforms decreased from the 1980s to present. Enteric virus concentrations after 1993 are much lower than those reported in other studies in the 1980s, although our values from 1988 to 1993 are not significantly different from our values obtained from 1994 to 2006. Presumably this is due to better and more consistent treatment of the wastewater, illustrating that the Part 503 Rule has been effective in reducing public exposure to pathogens relative to 17 yr ago. The percent reduction of both indicators and pathogens during anaerobic mesophilic digestion was between 94 and 99% for all organisms, illustrating that such treatment is effective in reducing pathogen loads.  相似文献   

11.
Stabilization of phosphorus (P) in sewage sludge (biosolids) to reduce water-soluble P concentrations is essential for minimizing P loss from amended soils and maximizing the capacity of the soil to safely serve as an outlet for this waste material. The chemical form at which P is retained in biosolids stabilized by Al(2)(SO(4))(3) x 18H(2)O (alum) or FeSO(4) x 7H(2)O (FeSul) was investigated by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray elemental spectrometry (EDXS) and by X-ray diffraction (XRD). Both treatments resulted in the formation of a Ca-P phase, probably brushite. Phosphorus was further retained in the alum-treated biosolids by precipitation of an Al-P phase with an Al/P molar ratio of about 1:1, while in the FeSul-treated biosolids, P was retained by both precipitation with Fe/P molar ratios of 1:1 or 1.5:1, and by adsorption onto newly formed Fe hydroxides exhibiting an Fe/P molar ratio of up to 11:1. All of these mechanisms efficiently reduced P solubility and are crucial in biosolids environmentally safe agronomic beneficial use for this waste product; however, each P phase formed may react differently in the amended soil, depending on soil properties. Thus, the proper P stabilization method would depend on the target soil.  相似文献   

12.
The application of biosolids (sewage sludge) to agricultural soils provides P in excess of crop needs when applied to meet the N needs of most agronomic crops. These overapplications can result in the buildup of P in soils to values well above those needed for optimum crop yields and also may increase risk of P losses to surface and ground waters. Because of concerns regarding the influence of P on water quality in the USA, many state and federal agencies now recommend or require P-based nutrient management plans for animal manures. Similar actions are now under consideration for the land application of biosolids. We reviewed the literature on this subject and conducted a national survey to determine if states had restrictions on P levels in biosolids-amended soils. The literature review indicates that while the current N-based approach to biosolids management does result in increases of soil P, some properties of biosolids may mitigate the environmental risk to water quality associated with land application of P in biosolids. Results of the survey showed that 24 states have regulations or guidelines that can be imposed to restrict land application of biosolids based on P. Many of these states use numerical thresholds for P in biosolids-amended soils that are based on soil test phosphorus (STP) values that are much greater than the values considered to be agronomically beneficial. We suggest there is the need for a comprehensive environmental risk assessment of biosolids P. If risk assessment suggests the need for regulation of biosolids application, we suggest regulations be based on the P Site Index (PSI), which is the method being used by most states for animal manure management.  相似文献   

13.
The USEPA standards (40 CFR Part 503) for the use or disposal of sewage sludge (biosolids) derived risk-based numerical values for Mo for the biosolids --> land --> plant --> animal pathway (Pathway 6). Following legal challenge, most Mo numerical standards were withdrawn, pending additional field-generated data using modern biosolids (Mo concentrations <75 mg kg(-1) and a reassessment of this pathway. This paper presents a reevaluation of biosolids Mo data, refinement of the risk assessment algorithms, and a reassessment of Mo-induced hypocuprosis from land application of biosolids. Forage Mo uptake coefficients (UC) are derived from field studies, many of which used modern biosolids applied to numerous soil types, with varying soil pH values, and supporting various crops. Typical cattle diet scenarios are used to calculate a diet-weighted UC value that realistically represents forage Mo exposure to cattle. Recent biosolids use data are employed to estimate the fraction of animal forage (FC) likely to be affected by biosolids applications nationally. Field data are used to estimate long-term Mo leaching and a leaching correction factor (LC) is used to adjust cumulative biosolids application limits. The modified UC and new FC and LC factors are used in a new algorithm to calculate biosolids Mo Pathway 6 risk. The resulting numerical standards for Mo are cumulative limit (RPc)=40 kg Mo ha(-1), and alternate pollutant limit (APL) = 40 mg Mo kg(-1) We regard the modifications to algorithms and parameters and calculations as conservative, and believe that the risk of Mo-induced hypocuprosis from biosolids Mo is small. Providing adequate Cu mineral supplements, standard procedure in proper herd management, would augment the conservatism of the new risk assessment.  相似文献   

14.
Gaseous emissions from swine (Sus scrofa) manure storage systems represent a concern to air quality due to the potential effects of hydrogen sulfide, ammonia, methane, and volatile organic compounds on environmental quality and human health. The lack of knowledge concerning functional aspects of swine manure management systems has been a major obstacle in the development and optimization of emission abatement technologies for these point sources. In this study, a classification system based on gas emission characteristics and effluent concentrations of total phosphorus (P) and total sulfur (S) was devised and tested on 29 swine manure management systems in Iowa, Oklahoma, and North Carolina in an effort to elucidate functional characteristics of these systems. Four swine manure management system classes were identified that differed in effluent concentrations of P and S, methane (CH4) emission rate, odor intensity, and air concentration of volatile organic compounds (VOCs). Odor intensity and the concentration of VOCs in air emitted from swine manure management systems were strongly correlated (r2 = 0.88). The concentration of VOC in air samples was highest with outdoor swine manure management systems that received a high input of volatile solids (Type 2). These systems were also shown to have the highest odor intensity levels. The emission rate for VOCs and the odor intensity associated with swine manure management systems were inversely correlated with CH4 and ammonia (NH3) emission rates. The emission rates of CH4, NH3, and VOCs were found to be dependent upon manure loading rate and were indirectly influenced by animal numbers.  相似文献   

15.
Direct multicomponent analysis of malodorous volatile organic compounds (VOCs) present in ambient air samples from 29 swine (Sus scrofa) production facilities was used to develop a 19-component artificial swine odor solution that simulated olfactory properties of swine effluent. Analyses employing either a human panel consisting of 14 subjects or gas chromatography were performed on the air stream from an emission chamber to assess human olfactory responses or odorant concentration, respectively. Analysis of the olfactory responses using Fisher's LSD statistics showed that the subjects were sensitive to changes in air concentration of the VOC standard across dilutions differing by approximately 16%. The effect of chemical synergisms and antagonisms on human olfactory response magnitudes was assessed by altering the individual concentration of nine compounds in artificial swine odor over a twofold concentration range while maintaining the other 18 components at a constant concentration. A synergistic olfactory response was observed when the air concentration of acetic acid was increased relative to the concentration of other VOC odorants in the standard. An antagonistic olfactory response was observed when the air concentration of 4-ethyl phenol was increased relative to the other VOC odorants in the standard. The collective odorant responses for nine major VOCs associated with swine odor were used to develop an olfactory prediction model to estimate human odor response magnitudes to swine manure odorants through measured air concentrations of indicator VOCs. The results of this study show that direct multicomponent analysis of VOCs emitted from swine effluent can be applied toward estimating perceived odor intensity.  相似文献   

16.
The soil solid phase components most responsible for P sorption in Florida soils are Fe and Al oxides. Thus, we hypothesized that land application of biosolids would significantly increase a soil's P retention by increasing its content of P-sorbing solids, especially when biosolids with high Fe and Al concentrations are applied to soils that sorb P poorly. Biosolids effects were quantified by a series of single-point isotherms on soils from two field studies sampled for up to 4 yr after initial biosolids application. Biosolids additions had little effect on P retention in a soil with abundant oxalate-extractable Fe and Al and a correspondingly large native P-sorbing capacity. However, biosolids significantly increased P retention in a soil with low oxalate-extractable Fe and Al content and low native P-sorbing capacity. Biosolids effects on P retention lasted 1 to 3 yr after application, depending on biosolids source and rate of application, and generally mimicked persistence of increased extractable Fe and Al concentrations in the poorly P-sorbing soil. Disappearance of added Fe and Al (and, hence, P retention capacity) from the surface horizons over time was relatively rapid, perhaps due to abundant organic acid production associated with biosolids degradation. Phosphorus in biosolids containing (or tailored to contain) abundant Fe and/or Al can be expected to behave as a slowly available P source, and to be less subject to leaching losses than completely soluble P sources.  相似文献   

17.
Surface application of manure in reduced tillage systems generates nuisance odors, but their management is hindered by a lack of standardized field quantification methods. An investigation was undertaken to evaluate odor emissions associated with various technologies that incorporate manure with minimal soil disturbance. Dairy manure slurry was applied by five methods in a 3.5-m swath to grassland in 61-m-inside-diameter rings. Nasal Ranger Field Olfactometer (NRO) instruments were used to collect dilutions-to-threshold (D/T) observations from the center of each ring using a panel of four odor assessors taking four readings each over a 10-min period. The Best Estimate Threshold D/T (BET10) was calculated for each application method and an untreated control based on preapplication and <1 h, 2 to 4 h, and approximately 24 h after spreading. Whole-air samples were simultaneously collected for laboratory dynamic olfactometer evaluation using the triangular forced-choice (TFC) method. The BET10 of NRO data composited for all measurement times showed D/T decreased in the following order (a = 0.05): surface broadcast > aeration infiltration > surface + chisel incorporation > direct ground injection Sshallow disk injection > control, which closely followed laboratory TFC odor panel results (r = 0.83). At 24 h, odor reduction benefits relative to broadcasting persisted for all methods except aeration infiltration, and odors associated with direct ground injection were not different from the untreated control. Shallow disk injection provided substantial odor reduction with familiar toolbar equipment that is well adapted to regional soil conditions and conservation tillage operations.  相似文献   

18.
Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.  相似文献   

19.
A wide array of organic chemicals occur in biosolids and other residuals recycled to land. The extent of our knowledge about the chemicals and the impact on recycling programs varies from high to very low. Two significant challenges in regulating these materials are to accurately determine the concentrations of the organic compounds in residuals and to appropriately estimate the risk that the chemicals present from land application or public distribution. This paper examines both challenges and offers strategies for assessing the risks related to the occurrence of organic compounds in residuals used as soil amendments. Important attributes that must be understood to appropriately characterize and manage the potential risks for organic chemicals in biosolids include toxicity and dose response, transport potential, chemical structure and environmental stability, analytical capability in the matrix of interest, concentrations and persistence in waste streams, plant uptake, availability from surface application versus incorporation, solubility factors, and environmental fate. This information is complete for only a few chemicals. Questions persist about the far greater number of chemicals for which toxicity and environmental behavior are less well understood. This paper provides a synopsis of analytical issues, risk assessment methodologies, and risk management screening alternatives for organic constituents in biosolids. Examples from experience in Wisconsin are emphasized but can be extrapolated for broader application.  相似文献   

20.
Increasing antibiotic resistance genes in the environment may pose a threat to public health. In this study, tetracycline and sulfonamide resistance genes (Tet-W, Tet-O, and Sul-I) were quantified in 24 manure samples from three farms and 18 biosolids samples from seven different wastewater treatment plants using quantitative polymerase chain reaction methods. Concentrations of Tet-W and Tet-O genes were observed to be significantly higher (p < 0.05) in manure than in biosolids samples. The background soil samples showed significantly lower concentration of the above genes compared with manure and biosolids. Lime-stabilized biosolids showed significantly (p < 0.05) lower concentration of antibiotic resistance genes compared with other biosolids treatment methods. Elevated levels of antibiotic resistance genes (Tet-W, Tet-O, and Sul-I) were observed in the amended soil samples after the land application of manure or biosolids (Site A) monitored for a period of about 4 mo. However, at another site (Site B), no significant increase (p > 0.05) in concentration of antibiotic resistance genes was observed after biosolids application on soil. Even though the concentration of antibiotic resistance genes in manure was statistically higher than that in biosolids, when they were applied on land, the contribution to the soil depended on the background soil concentration and the soil characteristics. Further study of multiple soil samples in various locations is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号