首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research was to investigate hexavalent chromium, Cr(VI), reduction by activated sludge and to evaluate the use of continuous-flow activated sludge systems for the treatment of Cr(VI)-containing wastewater. Three series of experiments were conducted using two parallel lab-scale activated sludge systems. During the first experiment, one system was used as a control, while the other received Cr(VI) concentrations equal to 0.5, 1, 3 and 5mg l(-1). For all concentrations added, approximately 40% of the added Cr(VI) was removed during the activated sludge process. Determination of chromium species in the dissolved and particulate phase revealed that the removed Cr(VI) was sorbed by the activated sludge flocs mainly as trivalent chromium, Cr(III), while the residual chromium in the dissolved phase was mainly detected as Cr(VI). Activated sludge ability to reduce Cr(VI) was independent of the acclimatization of biomass to Cr(VI) and it was not affected by the toxic effect of Cr(VI) on autotrophic and heterotrophic microorganisms. During the second experiment, both systems were operated under two different hydraulic residence time (theta equal to 20 and 28h) and three different initial organic substrate concentration (COD equal to 300, 150 and 0mg l(-1)). Cr(VI) reduction was favored by an increase of theta, while it was limited by influent COD concentration. Finally, at the last experiment the effect of anoxic and anaerobic reactors on Cr(VI) reduction was investigated. It was observed that the use of an anoxic zone or an anaerobic-anoxic zone ahead of the aerobic reactor favored Cr(VI) reduction, increasing mean percentage Cr(VI) reduction to almost 80%.  相似文献   

2.
The purpose of this research was to study the fate and toxicity of triclosan (TCS) in activated sludge systems and to investigate the role of biodegradation and sorption on its removal. Two continuous-flow activated sludge systems were used; one system was used as a control, while the other received TCS concentrations equal to 0.5 and 2mgl(-1). At the end of the experiment, 1mgl(-1) TCS was added in the control system to investigate TCS behaviour and effects on non-acclimatized biomass. For all concentrations tested, more than 90% of the added TCS was removed during the activated sludge process. Determination of TCS in the dissolved and particulate phase and calculation of its mass flux revealed that TCS was mainly biodegraded. Activated sludge ability to biodegrade TCS depended on biomass acclimatization and resulted in a mean biodegradation of 97%. Experiments with batch and continuous-flow systems revealed that TCS is rapidly sorbed on the suspended solids and afterwards, direct biodegradation of sorbed TCS is performed. Regarding TCS effects on activated sludge process, addition of 0.5mgl(-1) TCS on non-acclimatized biomass initially deteriorated ammonia removal and nitrification capacity. After acclimatization of biomass, nitrification was fully recovered and further increase of TCS to 2mgl(-1) did not affect the performance of activated sludge system. The effect of TCS on organic substrate removal was minor for concentrations up to 2mgl(-1), indicating that heterotrophic microorganisms are less sensitive to TCS than nitrifiers.  相似文献   

3.
4.
Oh YJ  Song H  Shin WS  Choi SJ  Kim YH 《Chemosphere》2007,66(5):858-865
The effect of two surfaces (amorphous silica and silica sand) on the reduction of chromium(VI) by zero-valent iron (Fe(0)) was investigated using batch reactors. The amendment of both surfaces significantly increased the rate and extent of Cr(VI) removal. The rate enhancement by amended surfaces is presumed to result from scavenging of Fe(0)-Cr(VI) reaction products by the provided surfaces, which minimized surface deactivation of Fe(0). The rate enhancing effect was greater for silica compared to sand, and the difference is attributed to silica's higher surface area, greater affinity for reaction products and pH buffering effect. For a given mass of Fe(0), the reactivity and longevity of Fe(0) to treat Cr(VI) increased with increasing dose of silica. Elemental analyses of the reacted iron and silica revealed that chromium removed from the solution was associated with both surfaces, with its mass distribution being approximately 1:1 per mass of iron and silica. The overall result suggests reductive precipitation was a predominant Cr(VI) removal pathway, which involves initial reduction of Cr(VI) to Cr(III), followed by formation of Cr(III)/Fe(III) hydroxides precipitates.  相似文献   

5.
Hexavalent chromium (Cr(VI)) was reduced to immobile and nontoxic Cr(III) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of kinetic batch and dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT. Reduction of Cr(VI) was rapid (within 1 h) in columns packed with quartz sand and bacteria, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO2-coated sand. A mathematical model was developed and evaluated against data obtained from column experiments. The model takes into account (1) advective-dispersive transport of Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria); (2) first-order kinetic adsorption of Cr(III) and lactate; (3) conversion of solid phase beta-MnO2 to solid phase MnOOH due to oxidation of Cr(III); (4) dual-Monod kinetics, where Cr(VI) is the electron acceptor and lactate is the electron donor. The breakthrough data for Cr(III), Cr(VI), lactate, and protein (mobile and immobile bacteria) were fitted simultaneously. The breakthrough data are well described by the mathematical model that considers the above processes. This result demonstrates the ability of the coupled hydrobiogeochemical model to simulate chromium transport in complex reactive systems.  相似文献   

6.
Hexavalent chromium (Cr(VI)) was reduced to non-toxic trivalent chromium (Cr(III)) by a dissimilatory metal reducing bacteria, Shewanella alga Simidu (BrY-MT) ATCC 55627. A series of dynamic column experiments were conducted to provide an understanding of Cr(VI) reduction by the facultative anaerobe BrY-MT in the presence of pyrolusite (beta-MnO(2)) coated sand and uncoated-quartz sand. All dynamic column experiments were conducted under growth conditions using Cr(VI) as the terminal electron acceptor and lactate as the electron donor and energy source. Reduction of Cr(VI) was rapid (within 8 h) in columns packed with uncoated quartz sand and BrY-MT, whereas Cr(VI) reduction by BrY-MT was delayed (57 h) in the presence of beta-MnO(2)-coated sand. The role of beta-MnO(2) in this study was to provide oxidation of trivalent chromium (Cr(III)). BrY-MT attachment was higher on beta-MnO(2)-coated sand than on uncoated quartz sand at 10, 60, and 85.5 h. Results have shown that this particular strain of Shewanella did not appreciably reduce Mn(IV) to Mn(II) species nor biosorbed Cr and Mn during its metabolic activities.  相似文献   

7.
The chromium distribution and transportation in the anaerobic activated sludge was investigated using a sequential extraction method. The results showed that Cr(VI) in aqueous solution was reduced by the metabolic product of SRB and form indissoluble Cr(OH)3 in a solid phase. More than 99% of Cr(III) in the sludge was in a stable residual form (RES) of bio-reduction. The Cr(VI) was mainly present in RES and organic form (OR). With increasing Cr(VI) concentration, Cr(VI) was transferred from RES into OR and even exchangeable form (EXCH). Meanwhile, sulphate and co-existing metal ions affected the occurrence form of Cr(VI).  相似文献   

8.
Lai CL  Lin SH 《Chemosphere》2004,54(3):235-242
Treatment of copper chemical mechanical polishing (CMP) wastewater from a semiconductor plant by electrocoagulation is investigated. The CMP wastewater was characterized by high suspended solids (SS) content, high turbidity (NTU), chemical oxygen demand (COD) concentration up to 500 mgl(-1) and copper concentration up to 100 mgl(-1). In the present study, electrocoagulation was employed to treat the CMP wastewater with an attempt to simultaneously lower its turbidity, copper and COD concentrations. The test results indicated that electrocoagulation with Al/Fe electrode pair was very efficient and able to achieve 99% copper ion and 96.5% turbidity removal in less than 30 min. The COD removal obtained in the treatment was better than 85%, with an effluent COD below 100 mgl(-1). The effluent wastewater was very clear and its quality exceeded the direct discharge standard. In addition, sludge settling velocities after electrocoagulation were measured and the data were employed to verify the empirical sludge settling velocity models. Finally, the sludge settling characteristic data were also utilized to establish the relation between the solids flux (G) and the initial solids concentration.  相似文献   

9.
A study on the Cr(VI) removal from aqueous solutions by steel wool   总被引:2,自引:0,他引:2  
The reduction of Cr(VI) by steel wool and the precipitation of reduced chromium by CaCO(3) powder and NaOH solution were investigated in continuous and batch systems, respectively. The effects of acid and initial Cr(VI) concentrations, volumetric rate and temperature of solution on Cr(VI) reduction were studied. The results showed that the reduction of Cr(VI), to a large extent, depended on, and increased with, acid concentration. The Cr(III) and iron ions in the reduced solution were completely precipitated by using NaOH solution at appropriate alkaline conditions. It was concluded that CaCO(3) powder could be used as a cheap precipitant for Cr(III) ions. But the iron ions in the reduced solution could not be fully removed by using this precipitant.  相似文献   

10.
The removal of particulate material in the aeration basin of the activated sludge process is mainly attributed to bioflocculation and hydrolysis of particulate substrate. The bioflocculation process in the aeration tank of the activated sludge process occurs only under favorable conditions in the system, and several common operational parameters affect its performance. The principal objective of this research was to observe the effect of mixed liquor suspended solids, solids retention time (SRT), and extracellular polymer substances on the removal of particulate substrate by bioflocculation. A first-order particulate removal expression, based on flocculation, accurately described the removal rates for supernatant suspended solids and colloidal chemical oxygen demand. Based on the results presented in this investigation, a mixed liquor concentration of approximately 2200 mg/L, an SRT of at least 3 days, and a contact time of 30 minutes are needed for relatively complete removal of the particulate substrate in a plug-flow reactor.  相似文献   

11.
Distribution coefficients (K(d)) between water and activated sludge particles (f(oc)=27.7+/-0.1%) were measured for the steroid estrogens (SE), estrone (E1), 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) in batch experiments. Experimental concentration levels ranged from environmentally realistic low ng/l to the high microg/l. In this range K(d)s were independent of their water concentration. The experimentally obtained K(d)s (with 95% confidence intervals) were 402+/-126 l/kg, 476+/-192 l/kg and 584+/-136 l/kg for E1, E2 and EE2, respectively. K(d)s were used to estimate the fraction of the total SE concentration that is expected to be sorbed in the activated sludge treatment tanks of a typical STP assuming equilibrium conditions. Assuming a suspended solids concentration of 4 g/l dissolved solids (ds), it was estimated that 61+/-9%, 66+/-13% and 70+/-6% of the total concentration of E1, E2 and EE2, respectively, would be sorbed during activated sludge treatment. The fraction of the SEs that was expected to be sorbed to suspended sludge particles in the effluents from a typical Danish STP was estimated to be only 0.20+/-0.06%, 0.24+/-0.10% and 0.29+/-0.07% of the total concentration of E1, E2 and EE2, respectively, at a suspended solids concentration of 5 mg/lds. For a typical STP the removal of steroid estrogens with excess sludge was estimated to be only 1.5-1.8% of the total loading if equilibrium conditions exists. Sorption is therefore not important for the fate of SEs in STPs compared to biodegradation.  相似文献   

12.
Use of waste iron metal for removal of Cr(VI) from water   总被引:6,自引:0,他引:6  
Lee T  Lim H  Lee Y  Park JW 《Chemosphere》2003,53(5):479-485
Cr(VI) removal from water was evaluated using waste iron particles in batch experimental mode. The reaction rates were inversely proportional to the initial Cr(VI) concentrations, and the reaction rates of Cr(VI) removal with the waste iron metal were faster than those with Peerless iron, a commercial zero-valent iron. The loss in iron reactivity due to the oxidation, from Fe(0) to Fe(II), ultimately to Fe(III), could be recovered by adding iron-reducing consortium (IRC) to the oxidized iron. Bacterial reduction of Cr(VI) also helped to decrease the aqueous concentration of Cr(VI), but the reduction of oxidized iron by IRC and the consequent reduction of Cr(VI) to Cr(III) by the reduced iron was more significant. Thus, reusing waste iron metal for Cr(VI) removal can reduce the cost of reactive media. Furthermore, the addition of IRC to the waste iron metal can accelerate the removal rate of Cr(VI), and can recover the reactivity of irons which were oxidized by Cr(VI).  相似文献   

13.
Jung Y  Choi J  Lee W 《Chemosphere》2007,68(10):1968-1975
The reduction of Cr(VI) to Cr(III) by magnetite in the presence of added Fe(II) was characterized through batch kinetic experiments and the effect of Fe(II) addition and pH were investigated in this study. The addition of Fe(II) into magnetite suspension improved the reductive capacity of magnetite. Eighty percent of Cr(VI) was reduced by magnetite (6.5 g l(-1)) with Fe(II) (80 mg l(-1)) within 1 h, while 60% of Cr(VI) was removed by magnetite only. However, the extent of improved reductive capacity of magnetite with Fe(II) was less than that predicted by the summation of each reduction capacity of magnetite and Fe(II). The reduction of Cr(VI) in the magnetite suspension with Fe(II) increased with the increase of molar ratio of Fe(II) to Cr(VI) (0.6, 1, 1.5, 2.3) in the range of 0-2.3 and with the decrease of pH in the range of pH 8.0-5.5. The speciation of chromium, iron, and oxygen on the surface of magnetite was investigated by X-ray photoelectron spectroscopy. Cr 2p3/2, Fe 2p3/2, and O 1s peaks were mainly observed at 576.7 and 577.8 eV, at 711.2 eV, and at 530.2 and 531.4 eV, respectively. The results indicates that Cr(III) and Fe(III) were the dominant species on the surface of magnetite after reaction and that the dominant species covered the magnetite surface and formed metal (oxy)hydroxide.  相似文献   

14.
The inhibition effect of arsenite, As(III), arsenate, As(V), inorganic mercury, Hg(II) and methylmercury, MeHg, on the respiration rate of activated heterotrophic sludge microorganisms was evaluated. As(III) and MeHg were much more toxic to activated sludge than As(V) and Hg(II) respectively. The effect of various experimental parameters on the toxicity, such as sludge age, concentration of suspended solids and exposure time, was investigated. An increase of sludge age or the concentration of suspended solids reduces the observed inhibition. Longer exposure seems to dramatically increase the inhibition of As(III), MeHg and Hg(II) during the first hours of exposure, while the later inhibition increases at a slower rate. On the contrary, in the presence of As(V), 24 hours after exposure, the respiration rate was similar to that of the control biomass.  相似文献   

15.
Murphy V  Hughes H  McLoughlin P 《Chemosphere》2008,70(6):1128-1134
Dried biomass of the macroalgae Fucus vesiculosus and Fucus spiralis (brown), Ulva spp. (comprising Ulva linza, Ulva compressa and Ulva intestinalis) and Ulva lactuca (green), Palmaria palmata and Polysiphonia lanosa (red) were studied in terms of their chromium biosorption performance. Metal sorption was highly pH dependent with maximum Cr(III) and Cr(VI) sorption occurring at pH 4.5 and pH 2, respectively. Extended equilibrium times were required for Cr(VI) binding over Cr(III) binding (180 and 120min, respectively) thus indicating possible disparities in binding mechanism between chromium oxidation states. The red seaweed P. palmata revealed the highest removal efficiency for both Cr(III) and Cr(VI) at low initial concentrations. However, at high initial metal concentrations F. vesiculosus had the greatest removal efficiency for Cr(III) and performed almost identically to P. lanosa in terms of Cr(VI) removal. The Langmuir Isotherm mathematically described chromium binding to the seaweeds where F. vesiculosus had the largest q(max) for Cr(III) sorption (1.21mmol g(-1)) and P. lanosa had the largest Cr(VI) uptake (0.88mmol g(-1)). P. palmata had the highest affinity for both Cr(III) and Cr(VI) binding with b values of 4.94mM(-1) and 8.64mM(-1), respectively. Fourier transform infrared analysis revealed interactions of amino, carboxyl, sulphonate and hydroxyl groups in chromium binding to Ulva spp. The remaining seaweeds showed involvement of these groups to varying degrees as well as ether group participation in the brown seaweeds and for Cr(VI) binding to the red seaweeds.  相似文献   

16.
Long-term column experiments were conducted under different geochemical conditions to estimate the longevity of Fe 0 permeable reactive barriers (PRBs) treating hexavalent chromium (Cr(VI)). Secondary carbonate minerals were precipitated, and their effects on the performance, such as differences in the mechanism for Cr removal and the changes in system hydraulics, were assessed. Sequestration of Cr(VI) occurred primarily by precipitation of Fe(III)-Cr(III) (oxy)hydroxides. Trace amounts of Cr were observed in iron hydroxy carbonate presumably due to substitution of Cr3+ for Fe3+. The formation of Fe(III)-Cr(III) (oxy)hydroxide greatly decreased the reactivity of the Fe 0 and thus resulted in migration of the Cr removal front. Carbonate minerals did not appear to contribute to further passivation with regard to reactivity toward Cr removal; rather, the column receiving high contents of dissolved calcium carbonate showed slightly enhanced Cr removal by means of a higher corrosion rate of Fe 0 and because of sequestration by an iron hydroxy carbonate. Precipitation of carbonates, however, governed other geochemical parameters. The porosity and hydraulic conductivity in the column receiving high contents of dissolved calcium carbonate did not indicate a great loss in system permeability because the accumulation of carbonates declined as the Fe 0 was passivated over time. However, the accumulated carbonates and associated Fe(III)-Cr(III) (oxy)hydroxide could cause problems because the presence of these solids resulted in a decline in flow rate after about 1400 pore volumes of operation.  相似文献   

17.
Out of an array of bacterial strains isolated from soil contaminated with effluents from electroplating wastewater, Bacillus coagulans exhibited the maximum Cr(VI) reduction potential. The feasibility of an immobilized B. coagulans bioreactor for hexavalent chromium reduction was investigated. Experimental results demonstrated that near complete removal of Cr(VI) was achieved in the reactor with an initial Cr(VI) concentration of 26 mg/l and reactor time of 24 h. The removal efficiency in the bioreactor was significantly affected by the influent Cr(VI) concentration, the Cr(VI) loading rate, the reaction time and the amount of Cr(VI) reduced by the biomass.  相似文献   

18.
In soil, chromium can be found in two main valence states: hexavalent Cr(VI) and trivalent Cr(III). In this study, we investigated the impact of Cr on photosynthetic gas exchange, photosystem II (PSII) activity, Cr translocation and accumulation, proline content and alkaloids production, i.e. scopolamine and hyoscyamine, in Datura innoxia. Cr uptake was influenced by its oxidation state and its concentration in growth medium. The plant roots were determined as being the main organ of Cr accumulation. Cr(VI) was more toxic than Cr(III) as indicated by reduction in plant biomass and net photosynthesis. The stomatal conductance showed a similar trend to that of photosynthetic capacity. Cr(III) and Cr(VI) had a different impact on substomatal CO(2) concentration then Cr toxicity was related to its oxidation states. In plants stressed with a Cr(VI) excess, a down regulation of PSII activity was observed with an impairment of photochemical activity. Indeed, the maximum quantum yield of PSII (F(v)/F(m)), the quantum yield of PSII (PhiPSII) and the efficiency of excitation capture by open centers (F'(v)/F'(m)) decreased. Cr(III) had little effects on PSII primary photochemistry, whatever its form induces an increase of scopolamine content without changes in hyoscyamine content in leaves of D. innoxia. These results provide that chromium contamination can change the secondary metabolites composition of leaves, thereby, impacting the quality, safety and efficacy of natural plant products synthesized by D. innoxia plants.  相似文献   

19.
In this study, akaganeite (beta-FeO(OH)) an ironoxyhydroxide material, was used as a low-cost potential adsorbent for the removal of hexavalent chromium from aqueous solutions. The influence of agitation speed, solution pH, initial chromium concentration, sorbent concentration and temperature were evaluated at batch kinetic runs. It was shown that the solid diffusion model, in comparison to simple reaction kinetic models, described better the sorption kinetics. Freundlich and Frumkin isotherm best fitted the equilibrium results. Akaganeite presented a sorption capacity approximately 80 mg Cr(VI) g(-1), under the conditions studied. Flotation was used as a downstream process for the effective removal of the loaded material.  相似文献   

20.
The feasibility of obtaining and using the biomass of a microalga, Chlorella miniata, from domestic wastewater (DW) cultures for the removal of chromium(III) [Cr(III)] and chromium(VI) [Cr(VI)] was compared with that from commercial Bristol medium (BM). Results showed that Chlorella miniata cultured in DW under 16-8 hours light-dark cycle [DW(16-8)] had similar growth to that in BM [BM(16-8)], but these two biomass had different biochemical compositions, and the former one had lower carbohydrate and higher protein content. When cultured in domestic wastewater, a higher biomass was obtained under continuous illumination [DW(24-0)], and the cells had higher carbohydrate and lower protein concentrations than that of DW(16-8). The spectra of the Fourier transform infrared spectrometer revealed that the functional groups on the surface of the three kinds of biomass--DW(16-8), DW(24-0), and BM(16-8)--were comparable, except an additional peak at 1731 cm(-1) was found in the biomass cultured in domestic wastewater, which was probably the result of bacterial contamination. Although biochemical differences were found among the three kinds of microalgal biomass, similar biosorption performances to chromium pollutants were recorded, with approximately 75% Cr(III) and 100% Cr(VI) removed at equilibrium in Cr(III) and Cr(VI) experiments, respectively, when dead biomass was used as a biosorbent. Therefore, it is possible to culture Chlorella miniata in domestic wastewater and use the biomass for the removal of chromium pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号