首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: A study of benthic macroinvertebrate community composition was conducted at eight sites along Shabakunk Creek, a small stream in Mercer County, New Jersey, which receives urban runoff. The relationship between changes in substrate composition and the nature of the benthic macroinvertebrate community has been examined. Organisms were collected seasonally from natural substrates in riffles. Attempts to employ artificial substrates for invertebrate collection proved unsuccessful, as the population on the samplers was not representative of that in the stream bed. Number of total benthic macroinvertebrate taxa collected declined from 13 in relatively undeveloped upstream areas to four below heavily developed areas, while population density decreased simultaneously in the same areas. Periphyton samples collected from natural substrates were analyzed for selected heavy metals. Significantly higher heavy metal concentrations are reported from substrates sampled below heavily developed areas, and changes in these values are discussed with regard to changes in benthic macroinvertebrate distribution.  相似文献   

2.
ABSTRACT: The processing of waste from confined animal feeding operations (CAFOs) presents a major environmental challenge. Treatment of waste and subsequent land application is a common best management practice (BMP) for these operations in Kentucky, USA, but there are few data assessing the effect of runoff from such operations on aquatic communities. The authors sampled a stream bordering a CAFO with a land application program to determine if runoff from the fertilized fields was adversely affecting stream communities. Water chemistry, periphyton, and macroinvertebrate samples from riffle habitats downstream of the CAFO were compared to samples collected from an upstream site and a control stream in 1999 and 2000. Riffle communities downstream of the fertilized fields had higher chlorophyll a levels than other sites, but there were no significant differences in macroinvertebrate numbers or in biometrics such as taxa richness among the sites. The BMP in place at this site may be effective in reducing this CAFO's impact on the stream; however, similar assessments at other CAFO sites should be done to assess their impacts. Functional measures such as nutrient retention and litter decomposition of streams impacted by CAFOs should also be investigated to ensure that these operations are not adversely affecting stream communities.  相似文献   

3.
Using Basin Area Stream Survey (BASS) data from the United States Forest Service, we evaluated how timber harvesting influenced patterns of variation in physical stream features and regional fish and macroinvertebrate assemblages. Data were collected for three years (1990–1992) from six hydrologically variable streams in the Ouachita Mountains, Arkansas, USA that were paired by management regime within three drainage basins. Specifically, we used multivariate techniques to partition variability in assemblage structure (taxonomic and trophic) that could be explained by timber harvesting, drainage basin differences, year-to-year variability, and their shared variance components. Most of the variation in fish assemblages was explained by drainage basin differences, and both basin and year-of-sampling influenced macroinvertebrate assemblages. All three factors modeled, including interactions between drainage basins and timber harvesting, influenced variability in physical stream features. Interactions between timber harvesting and drainage basins indicated that differences in physical stream features were important in determining the effects of logging within a basin. The lack of a logging effect on the biota contradicts predictions for these small, hydrologically variable streams. We believe this pattern is related to the large scale of this study and the high levels of natural variability in the streams. Alternatively, there may be time-specific effects we were unable to detect with our sampling design and analyses.  相似文献   

4.
The influence of golf course operation on benthic macroinvertebrate communities in Precambrian Shield streams was evaluated using rapid bioassessment and the reference condition approach. Streams were sampled for water chemistry and invertebrates in 1999 and 2000, six on operational golf courses, and seven in forested reference locations. Correspondence analysis (CA) was used to determine the major patterns in the macroinvertebrate taxa, and canonical correspondence analysis (CCA) was used to evaluate relationships with environmental variables. The reference streams were used to define the normal range of variation for a variety of summary indices to evaluate the golf course streams. In all cases, golf course streams were higher in nutrients and dissolved ions and more alkaline than the forested reference streams. There was considerable variability in the macroinvertebrate fauna from the golf course streams, which was related to differences in golf course land management practices and to the potential influence of highway runoff. Of the management practices evaluated, fertilizer application rates in particular were important, as was the presence of ponds upstream on the course. Invertebrate taxa with higher abundances in golf course streams included Turbellaria, Isopoda, Amphipoda, Zygoptera, and Trombidiformes. Taxa more common in the reference streams included Ephemeroptera, Megaloptera, Culicidae, and Plecoptera. There were marked differences in the overall benthic macroinvertebrate community in three of the six golf course streams studied relative to the forested reference streams, suggesting that golf course land management on the Precambrian Shield can be associated with significant differences in macroinvertebrate community structure.  相似文献   

5.
Identification of minimally disturbed reference sites is a critical step in developing precise and informative ecological indicators. We tested procedures to select reference sites, and quantified natural variation (inter-site and -annual variability) among reference conditions using a macroinvertebrate data set collected from 429 mediterranean-climate stream reaches in the San Francisco Bay Area, California (USA). We determined that a landscape GIS-based stressor screen followed by a local field-based stressor screen effectively identified least-disturbed reference sites that, based on NMS ordination results, supported different biological communities than sites identified with only landscape (GIS) or local (field) stressors. An examination of least-disturbed reference sites indicated that inter-site variability was strongly associated with stream hydrology (i.e., perennial vs. non-perennial flow) and annual precipitation, which highlights the need to control for such variation when developing biological indicators through natural gradient modeling or using unique biological indicators for both non-perennial and perennial streams. Metrics were more variable among non-perennial streams, indicating that additional modeling may be needed to develop precise biological indicators for non-perennial streams. Among 192 sites sampled two to six times over the 8-year study period, the biological community showed moderate inter-annual variability, with the 100 point index of biotic integrity scores varying from 0 to 51 points (mean = 11.5). Variance components analysis indicated that inter-annual variability explained only a fraction (5–18 %) of the total variation when compared against site-level variation; thus efforts to understand causes of natural variation between sites will produce more precise and accurate biological indicators.  相似文献   

6.
Leaving riparian strips on both sides of a stream is widely accepted to be an effective management approach in sustaining the valuable functions of stream and riparian ecosystems. The authors' overall objective is to provide microclimatic information for assessing the effectiveness of these strips. During the summer of 1993 and 1994, air temperatures were collected across 20 small, buffered streams in western Washington, USA, including five streams sampled before and after harvesting of the forest. These data were statistically analysed to examine the effects of adjacent harvesting with preservation of 16–72 m riparian forest strips. Regression models were developed to predict air temperatures at the stream and buffer edges, the difference between two locations, and seasonal changes. The authors found: (1) clearcutting in winter 1993/94 increased air temperature on the stream by up to 4°C, and changes in temperature variability from the stream to the upland, measured by coefficient of variation (CV), were significantly higher after harvesting; (2) forest buffers provided minimal protection for stream air temperature during the middle of summer (July) but were more effective early and late in the season; (3) buffer width was not a significant variable in predicting stream air temperature, suggesting that even a 72 m buffer was not sufficient to maintain a stream environment because of greater depth of edge influences.1998 Academic Press  相似文献   

7.
Non-structural streambank stabilization, or bioengineering, is a common stream restoration practice used to slow streambank erosion, but its ecological effects have rarely been assessed. We surveyed bank habitat and sampled bank macroinvertebrates at four bioengineered sites, an unrestored site, and a comparatively less-impacted reference site in the urban Peachtree-Nancy Creek catchment in Atlanta, GA, USA. The amount of organic bank habitat (wood and roots) was much higher at the reference site and three of the bioengineered sites than at the unrestored site or the other bioengineered site, where a very different bioengineering technique was used (“joint planting”). At all sites, we saw a high abundance of pollution-tolerant taxa, especially chironomids and oligochaetes, and a low richness and diversity of the bank macroinvertebrate community. Total biomass, insect biomass, and non-chironomid insect biomass were highest at the reference site and two of the bioengineered sites (p < 0.05). Higher biomass and abundance were found on organic habitats (wood and roots) versus inorganic habitats (mud, sand, and rock) across all sites. Percent organic bank habitat at each site proved to be strongly positively correlated with many factors, including taxon richness, total biomass, and shredder biomass. These results suggest that bioengineered bank stabilization can have positive effects on bank habitat and macroinvertebrate communities in urban streams, but it cannot completely mitigate the impacts of urbanization.  相似文献   

8.
Objective assessment of habitat compensation is a central yet challenging issue for restoration ecologists. In 1997, a 3.4-km stream channel, designed to divert water around an open pit diamond mine, was excavated in the Barrenlands region of the Canadian Arctic to create productive stream habitat. We evaluated the initial success of this compensation program by comparing multiple biological attributes of the constructed stream during its first three years to those of natural reference streams in the area. The riparian zone of the constructed stream was largely devoid of vegetation throughout the period, in contrast to the densely vegetated zones of reference streams. The constructed stream also contained lower amounts of woody debris, coarse particulate organic matter (CPOM), and epilithon; had lower coverage by macrophytes and bryophytes; and processed leaf litter at a lower rate than reference streams. Species richness and densities of macroinvertebrates were consistently lower in the constructed stream compared to natural streams. This contributed to differences in macroinvertebrate assemblage structure throughout the period, although assemblages showed some convergence by year 3. The effectiveness of the constructed stream to emulate natural streams varied somewhat depending on the biological attribute being evaluated. Assessments based on individual attributes showed that minimal to moderate levels of similarity between the constructed stream and natural streams were achieved. A collective assessment of all biological and ecosystem attributes suggested that the constructed stream was not a good surrogate for natural streams during these first years. Additional time would be required before many characteristics of the constructed stream would resemble those of reference streams. Because initial efforts to improve fish habitat in the constructed stream focused on physical structures (e.g., weirs, vanes, rock, groins), ecological factors limiting fish growth were not considered and likely constrained success. We suggest that a greater focus on organic characteristics and vegetation within the stream and its riparian zone could have accelerated compensation. The addition of woody debris and CPOM, combined with planting of shrubs and herbs along the stream, should provide a source of allochthonous matter for the biotic community while large cobble and boulders should improve the physical stability of stream system, protecting its organic components.  相似文献   

9.
The streams tributary to acidic Cone Pond, pH 4.5–4.8, and circumneutral Black Pond, pH 5.3–6.4, in the White Mountains of New Hampshire, USA, were monitored for a year. The watersheds of these two ponds were characterized in terms of geology and stream hydrology. Chemical gradients and patterns in rock weathering and groundwater discharge explain many of the differences in mineral content and acidity of the streams. The rocks of Black watershed produced an average of ten times the equivalent of basic cations as rocks from Cone watershed. This is on the same order as the difference in acidity of the two streams. Down-stream changes in stream chemistry follow differing patterns, but reflect the same principle of residence time and water path length controlling chemical evolution of streamwater. Watershed and aquatic managers may use these parameters in an inexpensive and simple assessment of the susceptibility of individual streams and ponds to acidification. A method is recommended to determine quickly the potential influence of bedrock type to aquatic chemistry.  相似文献   

10.
The Stream Performance Assessment (SPA), a new rapid assessment method, was applied to 93 restored, 21 impaired, 29 reference, and 13 reference streams with some incision throughout North Carolina. Principal component analysis (PCA) indicated restored streams align more closely with reference streams rather than impaired streams. Further, PCA‐based factor analysis revealed restored streams were similar to reference streams in terms of morphologic condition, but exhibited a greater range of scores relative to aquatic habitat and bedform. Macroinvertebrate sampling and GIS watershed analyses were conducted on 84 restored streams. SPA and watershed data were compared to Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa to determine which factors indicate stream health. SPA and watershed factors were used in least squares, ridge, and principal component regression (PCR) to develop a prediction model for EPT taxa. All three methods produced reasonable predictions for EPT taxa. Cross‐validation indicated ridge regression resulted in the lowest prediction error. The ridge model was then used to predict EPT taxa numbers for 21 impaired and 25 reference streams in addition to the 84 restored streams. Statistical comparisons of the predicted scores indicated urban streams (>10% impervious watershed cover) have lower expected numbers of EPT taxa. Rural restored streams have macroinvertebrate metric scores similar to those predicted for rural reference streams.  相似文献   

11.
Defining stream reference conditions is integral to providing benchmarks to ecological perturbation. We quantified channel geometry, hydrologic and environmental variables, and macroinvertebrates in 62 low‐gradient, SE United States (U.S.) Sand Hills (Level IV ecoregion) sand‐bed streams. To identify hydrogeomorphic reference condition (HGM), we clustered channel geometry deviation from expectations given watershed area (Aws), resulting in two HGM groups discriminated by area at the top of bank (Atob) residuals <0.6 m2 and >0.6 m2 predicted to be HGM reference/nonreference streams, respectively. Two independent partial least squares discriminate analyses used (1) hydrologic/environmental variables and (2) macroinvertebrate mean trait values (mT) on 10 reference/nonreference stream pairs of similar Aws for classification validation. Nonreference streams had flashier hydrographs and altered flow magnitudes, lower organic matter, coarser substrate, higher pH/specific conductivity compared with reference streams. Macroinvertebrate assemblages corresponded to HGM groupings, with mT indicative of multivoltinism, collector‐gatherer functional feeding groups, fast current‐preference taxa, and lower Ephemeroptera, Plecoptera, and Trichoptera richness and biotic integrity in nonreference streams. HGM classifications in Sand Hills, sand‐bed streams were determined from channel geometry. This easily implemented classification is indicative of contemporary hydrologic disturbance resulting in contrasting macroinvertebrate assemblages.  相似文献   

12.
ABSTRACT: Macroinvertebrate community data collected from streams in Wyoming were assessed at various scales: within one stream reach, between stream reaches within one stream, between streams, and between stream classes. Fourteen indices including number of individuals/m2, biomass/m2, number of taxa, Shannon's diversity index, and functional feeding group ratios were used to compare macroinvertebrates by stream reach and stream class. Statistical analysis indicated that for five of the 14 indices, significant variability occurred between macroinvertebrate communities within one reach. For two of the remaining nine indices there was significant variability between communities from several reaches within the same stream. For seven of the nine indices, there was significant variability among macroinvertebrate communities from streams of the same class. Variability among the macroinvertebrate communities from the three stream classes was significantly different for seven of the nine indices. ANOVA results suggest that macroinvertebrate communities from different samples within one reach and between reaches within one stream were more comparable than those from different streams and different stream classes.  相似文献   

13.
The influence of specific stressors, such as nutrient enrichment and physical habitat degradation, on biotic integrity requires further attention in Midwestern streams. We sampled 53 streams throughout Illinois and examined relationships between macroinvertebrate community structure and numerous physicochemical parameters. Streams were clustered into four major groups based on taxa dissimilarity. Habitat quality and dissolved nutrients were responsible for separating the major groups in a nonmetric multidimensional scaling ordination. Furthermore, the alignment of environmental factors in the ordination suggested there was a habitat quality-nutrient concentration gradient such that streams with high-quality habitats usually had low concentrations of nutrients. Discrimination by community measures further validated the major stream groups and indicated that forested streams had generally higher biological integrity than agricultural streams, which in turn had greater integrity than urban streams. Our results demonstrate that physical habitat degradation and nutrient pollution are important and often confounded determinants of biotic integrity in Illinois streams. In addition, we suggest that management of Midwestern streams could benefit from further implementation of multivariate data exploration and stream classification techniques.  相似文献   

14.
An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the system, thereby reducing costs associated with active channel restoration. Monitoring future biological recovery and determining the contribution of changing assemblages to specific ecological processes would provide a critical underpinning for adaptive management and ecologically-effective restoration.  相似文献   

15.
ABSTRACT: Fecal‐indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal‐coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal‐indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal‐indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal‐indicator bacteria concentrations were highly variable over a two‐day period of stable streamflow, which may have implications for testing of compliance to water‐quality standards.  相似文献   

16.
Effects of channel incision on base flow stream habitats and fishes   总被引:2,自引:0,他引:2  
Channel incision is a widespread phenomenon that results in stream and riparian habitat degradation. Fishes and physical habitat variables were sampled at base flow from three incised stream channels and one reference stream in northwest Mississippi, USA, to quantify incision effects on fish habitat and provide a basis for habitat rehabilitation planning and design. Incised channels were sampled in spring and autumn; the reference channel was sampled only in the autumn. Incised channel habitat quality was inferior to the reference channel despite the presence of structures designed to restore channel stability. Incised channels had physical habitat diversity levels similar to a nonincised reference channel, but contained fewer types of habitat. At base flow, incised channels were dominated by shallow, sandy habitats, moderate to high mean local Froude numbers, and had relatively little organic debris in their beds. In contrast, the reference stream had greater mean water depth, contained more woody debris, and provided more deep pool habitat. Fish assemblages in incised channels were composed of smaller fishes representing fewer species relative to the reference site. Fish species richness was directly proportional to the mean local Froude number, an indicator of the availability of pool habitat.  相似文献   

17.
ABSTRACT: The purpose of this study was to assess short term, macroinvertebrate colonization dynamics and biofilm accumulation in two agricultural streams, one of which had been recently exposed to chronic, intermittent organic effluents from a slaughterhouse. During the winter and summer, macroinvertebrates and biofilm were collected from brick substrates from four or three sites in the streams on a geometric time schedule (1, 2, 4, 8, 16, and 32 days of exposure). Invertebrate total densities stabilized quickly, but the mass of biofilm increased throughout the study periods. Invertebrate community indices (diversity, evenness, dominance, richness) differed between the unaffected, “agricultural reference” sites and the affected sites, below the point source. All sites were dominated by Baetis bicaudatus (mayfly), Hydrobia sp. (gastropod), and Dugesia tigrina (Turbellaria). Response of these taxa differed between seasons and exposure to organic effluents. Stream invertebrate colonization processes showed evidence of the perturbation after the inflow of organic effluents had stopped from the slaughterhouse. Chronic organic enrichment reduced the species richness in the potential pool of colonists. Three months after the organic inputs had stopped, colonization timing and community structure was not yet at levels evident in reference and upstream sites.  相似文献   

18.
Fourteen streams in the Sierra Nevada in the USA were sampled to determine whether diversions of streamflow for hydroelectric development had caused significant changes in riparian vegetation. Several streams showed significant differences in vegetation cover, community composition, or community structure between pairs of diverted and undiverted reaches. On some streams, environmental conditions rather than streamflow diversions may have been responsible for vegetation differences. Streams in the Sierra Nevada respond individualistically to diversions. Prediction of vegetation responses must take into consideration environmental characteristics of specific stream reaches.  相似文献   

19.
20.
To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号