首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 123 毫秒
1.
在活性污泥系统采用超声波处理剩余污泥以考察污泥减量效果及其对系统处理效果的影响.结果表明:在声能密度0.25~0.50 W/mL范围内,经过1~30 min的超声波处理,系统表观产率显著下降,剩余污泥的产量可以减少20%~50%左右.同时发现,污泥的沉降性能指标SVI有所下降,而污泥的稳定性有所提高,活性污泥系统的出水水质略有不同程度的下降.  相似文献   

2.
超声处理对活性污泥系统污泥减量效果的研究   总被引:16,自引:0,他引:16  
在活性污泥系统采用超声波处理剩余污泥以考察污泥减量效果及其对系统处理效果的影响.结果表明:在声能密度0.25~0.50 W/mL范围内,经过1~30 min的超声波处理,系统表观产率显著下降,剩余污泥的产量可以减少20%~50%左右.同时发现,污泥的沉降性能指标SVI有所下降,而污泥的稳定性有所提高,活性污泥系统的出水水质略有不同程度的下降.  相似文献   

3.
高声能密度超声波破碎污泥细胞效能的研究   总被引:1,自引:0,他引:1  
采用超声波在较高声能密度下处理SBR的剩余污泥,主要考察了含固率、声能密度和作用时间对污泥细胞破碎效果的影响。结果表明,在声能密度0.5~3 W/mL内,含固率1%~1.5%的剩余污泥经超声波作用后,上清液SCOD随作用时间呈线性升高;在声能密度1~3 W/mL内,含固率0.25%~0.5%的剩余污泥经超声波作用后,上清液SCOD随作用时间呈平缓缓慢升高。高声能密度超声波更适合对较高含固率污泥的细胞破碎;此情况下,上清液SCOD增幅、NH4+-N、TN及TP升幅均与声能密度正相关。经超声波作用6 min后,污泥形态结构已破坏。  相似文献   

4.
剩余污泥减量化工艺条件优化研究   总被引:2,自引:1,他引:1  
运用超声处理连续流活性污泥系统中不同种类的污泥,并将其回流至原系统中,研究其剩余污泥减量化效果。按正交实验设计并进行试验,确定最优工艺条件。结果表明:当声能密度为0.6 W/mL,作用时间为5 min,超声污泥为混合污泥,回流比为7∶120时,减量效果最佳。且在该条件下经一周期的运行,污泥减量效果达到96.24%,COD由进水的830 mg/L降至44 mg/L,NH4+-N和TN分别由进水的62.43 mg/L和103.19 mg/L,降解到2.31 mg/L和6.52 mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级排放标准。  相似文献   

5.
针对AB法A段剩余污泥量大的问题,采用臭氧和超声波对A段污泥减量效能进行了对比试验研究.结果表明:(1)将相当于传统A段剩余污泥量的污泥,进行2 h臭氧接触氧化后,再回流至A段反应器,其平均污泥产率系数为0.0328 kg MLSS/kg COD·d;(2)采用超声波对A段进水作用0.5 h,其平均污泥产率系数为0.0246 kg MLSS/kg COD·d.A段采用上述2种方法减量后几乎无剩余污泥产生,同时对A段反应器中的污泥活性和出水水质的影响较小,从经济上考虑臭氧法具有优势.  相似文献   

6.
以超声波预处理城市污水处理厂剩余污泥,考察不同功能密度下的超声波对污泥水解释放碳源过程的影响。结果表明,污泥经超声波预处理,可缩短污泥水解时间,促进VFA释放,且声能密度越大,促进作用越显著;当声能密度为0.138 W/mL、作用时间为1 min时,污泥水解4~5 d后,释放VFA达到800 mg/L,VFA/TN由初始的1.98提升至4.15,VFA/TP由初始的24.78提升至42.35。同时,超声波不仅破坏污泥絮体结构,而且提高了微生物中蛋白酶和辅酶F420的活性,更有利于污泥水解。  相似文献   

7.
通过烧杯溶胞实验,考察了ClO2处理SBR剩余污泥上清液△SCOD随处理时间的变化,以确定ClO2溶胞最佳方式;在SBR中试系统,把系统排出剩余污泥的50%经ClO2处理后回流至处理系统,运行50 d,考察处理系统的污泥减量效果及其对系统污水处理效果的影响.结果表明,ClO2具有良好的溶胞作用,在最佳投量为8 mg C...  相似文献   

8.
污泥转移SBR工艺处理低浓度生活污水   总被引:1,自引:0,他引:1  
污泥转移SBR工艺是一种通过内部污泥回流实现污泥在不同SBR隔室间转移,从而增加污泥利用效率,提高系统除污效能的新工艺。以设计规模为240 m3/d、处理低浓度生活污水的工艺系统为对象,研究了新工艺在不同泥转移量(污泥回流比)下的除污性能,并与系统以传统SBR方式运行的情况进行了对比。结果表明,新工艺可以有效提高SBR反应器的容积利用率;采用30%的污泥回流比进行污泥转移,新工艺的处理能力比传统SBR工艺提高近1/2,除磷效率从46%提升至85%。出水各项水质指标均能达到国家排放标准的要求。  相似文献   

9.
研究了剩余污泥热水解后的回流对缺氧/好氧膜生物反应器(AOMBR)同步处理污水及污泥减量的影响。试验通过与常规AOMBR工艺对比,考察了污泥热水解回流量对系统污泥浓度、污泥产率、出水水质的影响。试验结果表明,当热水解污泥回流量分别为剩余污泥量的100%、75%、50%时,热水解会一定程度提高系统的污泥浓度,但污泥总量却分别削减了20.2%、21.2%和13.1%,系统污泥产率分别下降了46%、54%和33%,剩余污泥排放量分别削减了100%、75%、50%。两套工艺的平均出水COD、NH+4-N、TN分别在40、3、5mg/L以下,均能达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A排放标准。因此,热水解污泥的回流并不会对系统的出水水质产生明显影响,同时能够显著削减污泥总量。  相似文献   

10.
以高含磷剩余污泥为对象,采用超声波处理、热处理和酸碱调节3种减量化技术,研究了细胞物质溶解过程中COD、氮、磷的释放规律.结果表明,在超声最大时间为1.0 h、声能密度为0.167~0.500 W/mL的实验条件下,超声波处理中污泥减量和细胞物质的释放效果随超声时间延长而提高,声能密度对释放效果的影响较小;在热处理中,污泥减量和细胞物质的释放效果随热处理温度的升高和热处理时间的延长而提高,但热处理温度的贡献大于热处理时间;在超声波处理和热处理(除热处理温度为50 ℃外)中,污泥上清液TN中均以有机氮为主,NH3-N次之;在酸碱调节处理中,只有在初始pH为12.0时,处理4.0 h后才会有一定的污泥减量和溶解效果,但污泥浓度下降不明显.3种减量化技术中,超声波处理最为经济、有效.  相似文献   

11.
原位臭氧氧化污泥减量工艺的运行效能   总被引:1,自引:0,他引:1  
采用ASBR/SBR原位臭氧污泥减量工艺,重点研究了原位臭氧氧化对SBR段污泥产率和出水水质的影响。两个相同的ASBR/SBR组合工艺同时运行,每隔3个周期向臭氧投加组SBR的曝气阶段原位间歇投加臭氧,臭氧投加量为0.027 g O3/g MLSS,连续运行40 d;对照组不投加臭氧作为对比。结果表明,原位臭氧氧化实现污泥减量约43.9%,臭氧投加组SBR段平均污泥产率系数为0.1447 g SS/g SCOD,而对照组为0.2580 g SS/g SCOD,投加组没有惰性污泥的累积,并且污泥沉淀性能得到改善。原位臭氧氧化对出水水质影响不大,投加组与对照组相比,臭氧投加3周期后的出水COD、NH4+-N、TN和TP平均值分别为47.8、0.76、14.1和6.4 mg/L,去除率分别下降了4%、2%、3%和7.7%,其中COD、NH4+-N和TN均能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。  相似文献   

12.
将厌氧序批式间歇反应器(ASBR)和序批式间歇反应器(SBR)串联组成污泥减量新工艺,着重探讨了对SBR段进行原位臭氧投加时,臭氧氧化作用对系统硝化和反硝化能力的影响,并以不投加作为对照。结果表明,将臭氧原位投加到ASBR—SBR组合工艺的SBR段,臭氧投加量为0.027g(以每克MLSS计),每隔3个周期再次投加、连续运行40d,试验组SBR段臭氧投加当期出水COD去除率为86%,比对照组下降了9百分点,但臭氧氧化细胞内大量有机物进入混合液中,为反硝化作用提供了外加碳源,对污泥反硝化能力的提高起到了一定的促进作用;试验组部分硝化细菌由于臭氧的强氧化作用而失去活性,但是随着剩余污泥量的减少,系统的污泥龄延长,有利于硝化细菌的生长,使得系统的硝化能力基本未受影响;试验组臭氧投加当期SBR段出水NO2--N平均浓度比对照组的高18.9%,但经过3个周期的运行后,其SBR段出水NO2--N平均质量浓度降低至7.57mg/L,基本与对照组持平;试验组臭氧投加当期SBR段出水NO3--N的平均浓度高于对照组,但经过3个周期的运行后,试验组出水NO3--N平均浓度低于对照组;试验组臭氧投加当期SBR段出水TN和对照组的出水TN平均去除率分别为65%和75%,但试验组再经过3个周期的运行后,出水TN平均去除率可以达到72%。可见,原位投加臭氧并未对SBR段的硝化和反硝化能力产生明显的影响。  相似文献   

13.
以养猪场废水作为研究对象,采用序列间歇式活性污泥法SBR,通过实验研究了供气量、pH、排泥量、原水稀释倍数、水力停留时间(HRT)对SBR出水水质的影响。结果表明,供气量为375 L/(min·m3)、pH为8.0,并添加排泥100 mL的操作,可使SBR处理效果明显提高,COD、磷和凯氏氮去除率最高分别可达96.37%、94.14%、99.38%。逐步降低进水稀释倍数有利于培养出处理高浓度有机养猪废水的活性污泥,可将平均COD、磷和凯氏氮含量高达9 161.24、33.41和1 502.77 mg/L的养猪废水处理至出水的490.11、5.35和17.84 mg/L。降低HRT对SBR去除率影响不大。  相似文献   

14.
铬离子对SBR工艺活性污泥毒性作用研究   总被引:3,自引:0,他引:3  
针对重金属铬离子对SBR工艺系统中活性污泥的毒性作用,通过检测不同初始污泥容积指数(SVI)下SBR工艺活性污泥在不同铬负荷下的COD值、挥发性污泥浓度以及受铬离子影响的污泥容积指数(SVI),研究重金属铬离子对活性污泥的毒性作用以及对SBR工艺系统处理污水的影响。研究表明,重金属铬离子会导致SBR工艺系统出水COD升高;将铬离子对活性污泥的毒性作用按照挥发性污泥(MLVSS)铬负荷可划分为耐受范围、非耐受范围、细胞失活范围以及细胞分解范围。耐受范围铬负荷低于约30 mg Cr3+/gMLVSS,此范围内铬离子对于活性污泥的毒性作用不大,不致于导致系统出水水质变差;非耐受范围铬负荷在约30~65 mg Cr3+/g MLVSS,在铬离子作用下系统出水COD值明显高于对照系统;细胞失活范围铬负荷在约70~100 mg Cr3+/gMLVSS范围内,SVI大幅下降,微生物部份死亡和失活,出水COD尽管有一些下降,但与进水COD相比差不了多少;细胞分解范围铬负荷在约100 mg Cr3+/gMLVSS以上,微生物大量死亡,部分死亡细胞分解,系统出水COD值因微生物的死亡分解而超出进水COD值,受铬离子影响的系统SVI值大幅度降低。  相似文献   

15.
宋勇  施周  陈世洋  罗璐 《环境工程学报》2013,7(7):2711-2715
利用水解溶菌酶对SBR系统中的剩余污泥进行减量。通过与未加水解溶菌酶的相同系统对比,研究了水解溶菌酶作用下的SBR系统中剩余污泥的减量效果与微生物群落结构的变化。结果表明,在50 d的运行期内,水解溶菌酶作用下的SBR系统中剩余污泥减量总计达到76.3%,同时该系统对COD与TN的平均去除率分别为88.2%与53.8%。通过PCR-DGGE分析可知,随着运行时间的增加两系统微生物群落结构的差异逐步明显,SBR系统中原有的部分优势微生物在水解溶菌酶的作用下逐渐减弱。另外,对微生物群落的部分优势细菌进行克隆测序和系统发育树分析,通过鉴定获得的7条细菌的16S rDNA序列,它们分别与放线菌和杆菌同源性在97%以上。  相似文献   

16.
低溶解氧污泥微膨胀污染物去除性能的研究   总被引:3,自引:0,他引:3  
为了研究低溶解氧微膨胀状态下污染物的去除效果,采用SBR反应器,平均DO浓度为0.5~0.9 mg/L,通过好氧/缺氧(O/A)的运行方式,对污染物处理效果进行研究。结果表明:低溶解氧丝状菌污泥微膨胀状态下,SVI可稳定控制在200 mL/g左右,出水SS含量很低,COD去除率在80%以上,氨氮去除率90%以上,除磷效率在90%之上,出水水质良好,同时可以节约曝气量约46.7%。低溶解氧微膨胀状态下,可保证出水处理效果,污泥沉降性能影响小,同时可以节约动力费用。  相似文献   

17.
The effect of influent nitrogen composition on organic nitrogen production in a sequencing batch reactor (SBR) activated sludge process was investigated. A laboratory-scale SBR was fed with three different type synthetic wastewaters with varying nitrogen compositions (phase I = nitriloacetic acid + ammonium [NH4-N], phase II = NH(4-)N, and phase III = amino acid mixture + NH(4-)N) was operated. The effluent contained approximately 1 to 2 mg N/L organic nitrogen, even though there was no organic nitrogen in influent. The effluent organic nitrogen increased to approximately 4 mg N/L when the influent composition was changed and then stabilized at <2 mg N/L. The maximum nitrifier growth rate constants (microN) were calculated as 0.91+/-0.10 to 1.14+/-0.08 day-1, 0.82 +/-0.13 day-1, and 0.89+/-0.08 day-1 at 20 degrees C for the three different influent compositions. The effluent colloidal organic nitrogen (CON) was negligible, suggesting that the effluent CON found in full-scale plants may be the result of influent-derived suspended matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号