首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In four field experiments, carried out in The Netherlands, small wind-tunnels were used to make direct measurements of ammonia (NH(3)) volatilization from different types of slurry and manure applied to the surface of grassland. During periods of up to six days following application, losses of NH(3)-N often amounted to more than 40% of the NH(4)-N applied. Percentage loss was highest (83%) from a poultry slurry and least (21%) from an air-dried poultry manure. Losses of NH(3)-N were generally greater from pig slurry (36-78%) than from cattle slurry (41%). In most cases 80% or more of the total NH(3)-N loss occurred within 48 h of application. Estimates were made of total annual NH(3) emissions from four systems of poultry housing. The highest total loss (50% of the N voided in droppings) occurred with a battery house producing a slurry with a low content of dry-matter; most of the loss took place after spreading. With a second battery house, in which the droppings were air-dried, the total loss was only 12%, with much lower emissions from the housing and during spreading.  相似文献   

2.
Three types of farm waste (cattle slurry, dirty water and farm yard manure (FYM)) were applied to hydrologically isolated grassland plots on a sloping poorly draining soil. Two applications were made, the first in October and the second in February. Application rates were 50 m(3) ha(-1) of slurry and dirty water and 50 t ha(-1) of FYM. Volumes of run-off following rainfall events and concentrations of N, P and K in run-off were measured. Losses of nutrients were higher following applications made with the soil at field capacity and rainfall soon after application. In terms of percentage loss of applied nutrients, losses were generally low. Concentration of N in run-off from the dirty water and FYM treated plots following the first application and the slurry treated plots following the second application exceeded 11.3 mg dm(-3) (a recommended limit for drinking water) although the maximum concentration recorded was 15 mg dm(-3) following FYM application. Concentration of P in run-off only exceeded 1 mg dm(-3) following the second application of cattle slurry. Concentration of K exceeded 10 mg dm(-3) following the first application of FYM and the second application of cattle slurry.  相似文献   

3.
Research was conducted on nitrogen (N) surface run-off losses following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farmyard manure and inorganic N and phosphorus (P) fertiliser were compared, over a 4-year period (1993-97). P losses from the same studies are reported in a separate paper. The application of cattle slurries to the silty clay loam soil increased the loss of solids and NH4(+)-N in surface water flow compared to control plots receiving inorganic fertiliser only, or no treatment, but had little effect on NO3(-)-N losses by this route. Results were consistent with other observations that rainfall events immediately after manure applications are particularly likely to be associated with nutrient run-off losses. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increasing slurry application rate and, in particular, slurry solids loading, increased solids and NH4(-)-N losses via surface run-off. The threshold, above which the risk of losses via surface run-off appeared to be greatly increased, was ca. 2.5-3.0 t/ha slurry solids, which approximates to the 50 m3/ha limit suggested for slurry within UK 'good agricultural practice'. Sealing of the soil surface by slurry solids appears to be a possible mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Total losses of NH4(+)-N and NO3(-)-N during the 4-year monitoring period were insignificant in agronomic terms, but average soluble N concentrations (NH4(+)-N + NO3(-)-N) in run-off, ranging from ca. 2.0 mg/l, up to 14.0 mg/l for the higher rate slurry treatments. Peak concentrations of NH4(+)-N > 30 mg/l, are such as to be of concern in sensitive catchments, in terms of the potential for contribution to accelerated eutrophication and adverse effects on freshwater biota.  相似文献   

4.
Phosphorus (P) surface run-off losses were studied following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farm yard manure (FYM) and inorganic nitrogen (N) and P fertiliser were compared, over a 4-year period (1993-97). N losses from the same studies are reported in a separate paper. The application of cattle FYM and, especially slurry, to the silty clay loam soil increased both particulate and soluble P loss in surface water flow. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increased application of slurry solids increased all forms of P loss via surface run-off; the results suggested that a threshold for greatly increased risk of P losses via this route, as for N, occurred at ca. 2.5-3.0 t/ha solids loading. This approximates to the 50 m3/ha application rate limit suggested for slurry within UK 'good agricultural practice'. The studies also provided circumstantial evidence of the sealing of the soil surface by slurry solids as the major mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Losses of total and soluble P, recorded for each of the 4 years of experiments, reached a maximum of only up to 2 kg/ha total P (TP), even after slurry applications initiating run-off. Whilst these losses are insignificant in agronomic terms, peak concentrations of P (up to 30,000 micrograms/l TP) in surface water during a run-off event, could be of considerable concern in sensitive catchments. Losses of slurry P via surface run-off could make a significant contribution to accelerated eutrophication on entry to enclosed waters, particularly when combined with high concentrations of NO3(-)-N. Restricting slurry application rates to those consistent with good agronomic practice, and within the limits specified in existing guidelines on good agricultural practice, offers the simplest and most effective control measure against this potentially important source of diffuse pollution.  相似文献   

5.
It is a common practice in the midwestern United States to raise swine in buildings with under-floor slurry storage systems designed to store manure for up to one year. These so-called "deep-pit" systems are a concentrated source for the emissions of ammonia (NH3), hydrogen sulfide (H2S), and odors. As part of a larger six-state research effort (U.S. Department of Agriculture-Initiative for Future Agriculture and Food Systems Project, "Aerial Pollutant Emissions from Confined Animal Buildings"), realtime NH3 and H2S with incremental odor emission data were collected for two annual slurry removal events. For this study, two 1000-head deep-pit swine finishing facilities in central Iowa were monitored with one-year storage of slurry maintained in a 2.4 m-deep concrete pit (or holding tank) below the animal-occupied zone. Results show that the H2S emission, measured during four independent slurry removal events over two years, increased by an average of 61.9 times relative to the before-removal H2S emission levels. This increase persisted during the agitation process of the slurry that on average occurred over an 8-hr time period. At the conclusion of slurry agitation, the H2S emission decreased by an average of 10.4 times the before-removal emission level. NH3 emission during agitation increased by an average of 4.6 times the before-removal emission level and increased by an average of 1.5 times the before-removal emission level after slurry removal was completed. Odor emission increased by a factor of 3.4 times the before-removal odor emission level and decreased after the slurry-removal event by a factor of 5.6 times the before-removal emission level. The results indicate that maintaining an adequate barn ventilation rate regardless of animal comfort demand is essential to keeping gas levels inside the barn below hazardous levels.  相似文献   

6.
We report seasonal variation in CH(4) and N(2)O emission rate from solid storage of bovine manure in Delhi as well as emission factors and emission inventory from manure management systems in India. Emission flux observed in the year 2002-2003 was 4.29+/-1, 4.84+/-2.44 and 12.92+/-4.25 mg CH(4)kg(-1)dung day(-1), as well as 31.29+/-4.93, 72.11+/-16.22 and 6.39+/-1.76 microgN(2)O kg(-1)dung day(-1) in winter, summer and rainy seasons, respectively. CH(4) emission factors varied from 0.8 to 3.3 kg hd(-1)year(-1) for bovines and were lower than IPCC-1996 default values. N(2)O emission factors varied from 3 to 11.7 mg hd(-1)year(-1) from solid storage of manure. Inventory estimates were found to about 698+/-27 Gg CH(4) from all manure management systems and 2.3+/-0.46 tons of N(2)O from solid storage of manure for the year 2000.  相似文献   

7.
Environmental Science and Pollution Research - Microbial fuel cell (MFC) is a sustainable technology to treat cattle manure slurry (CMS) for converting chemical energy to bioelectricity. In this...  相似文献   

8.
Weiss K  Schüssler W  Porzelt M 《Chemosphere》2008,72(9):1292-1297
Pharmaceuticals are widely used in modern livestock production and can reach the environment via the application of manure containing excreted drugs. Limited information is available on the transport and fate of veterinary medicines applied to soils. Therefore, we assessed the potential for the sulphonamide antibiotic sulfamethazine (SMT) and the antiparasitic drug flubendazole (FLUB) including their metabolites to move from agricultural manure to drainage waters at 1m depth. A comparison was made of losses from sites under different land use (grassland versus arable cropping) as well as losses from neighbouring plots under the same land use. Liquid manure from pigs treated with SMT and FLUB was spread on 10 x 30 m2 plots (750l per plot). SMT concentration in slurry ranged from 600 to 1700 microg l(-1) (metabolite acetyl-SMT 280-1700 microg l(-1)) and FLUB concentration ranging from 25 to 56 microg l(-1) (metabolite amino-FLUB 32-110 microg l(-1), hydroxy-FLUB 19-38 microg l(-1)). About 1h after application heavy rainfall (50mm in 2.5h) was simulated by sprinkler irrigation. Drainage flow started within 1h after the commencement of sprinkling. SMT and FLUB concentrations in leachate reached values of up to 16 microg l(-1) and 0.3 microg l(-1), respectively. Loss rates (relative to the applied amounts) from the neighbouring sites under arable cropping ranged from 2.8% to 5.4% for SMT and 0.8% to 3.1% for FLUB (including metabolites). On the permanent grassland plot, due to its multitude of macropores, loss rates reached values up to 10% for SMT and 16% for FLUB (including metabolites). These results demonstrate that the variability in leaching of veterinary drugs may be high even between large neighbouring plots, depending on site heterogeneity and land use.  相似文献   

9.
Laboratory experiments were carried out in a wind tunnel with a model of a slurry pit to investigate the characteristics of ammonia emission from dairy cattle buildings with slatted floor designs. Ammonia emission at different temperatures and air velocities over the floor surface above the slurry pit was measured with uniform feces spreading and urine sprinkling on the surface daily. The data were used to improve a model for estimation of ammonia emission from dairy cattle buildings. Estimates from the updated emission model were compared with measured data from five naturally ventilated dairy cattle buildings. The overall measured ammonia emission rates were in the range of 11-88 g per cow per day at air temperatures of 2.3-22.4 degrees C. Ammonia emission rates estimated by the model were in the range of 19-107 g per cow per day for the surveyed buildings. The average ammonia emission estimated by the model was 11% higher than the mean measured value. The results show that predicted emission patterns generally agree with the measured one, but the prediction has less variation. The model performance may be improved if the influence of animal activity and management strategy on ammonia emission could be estimated and more reliable data of air velocities of the buildings could be obtained.  相似文献   

10.
Three experiments were conducted in which intercomparisons were made between the equilibrium concentration technique, developed at JTI, Sweden, and the integrated horizontal flux technique for measuring ammonia emissions following applications of urea fertiliser, cattle slurry and solid pig manure to land. Mean square prediction error analysis was used to compare the emission rates measured by the two techniques. There were no significant differences between the measurement techniques, although there was some evidence that emission rates were overestimated by the equilibrium concentration method relative to the integrated horizontal flux technique at higher emission rates (>400 g.N ha−1 h−1). The equilibrium concentration method provides a practical and relatively inexpensive technique for measuring emissions under ambient conditions from small plots but good sampler preparation, adequate replication of emission measurements and appropriate choice of duration of sampling periods are necessities for obtaining reliable results.  相似文献   

11.
Atmospheric emission of the soil fumigant 1,3-dichloropropene (1,3-D) has been associated with the deterioration of air quality in certain fumigation areas. To minimize the environmental impacts of 1,3-D, feasible and cost-effective control strategies are in need of investigation. One approach to reduce emissions is to enhance the surface layer of a soil to degrade 1,3-D. A field study was conducted to determine the effectiveness of composted steer manure (SM) and composted chicken manure (CKM) to reduce 1,3-D emissions. SM or CKM were applied to the top 5-cm soil layer at a rate of 3.3 or 6.5 kg m(-2). An emulsified formulation of 1,3-D was applied through drip tape at 130.6 kg ha(-1) into raised beds. The drip tape was placed in the center of each bed (102 cm wide) and 15 cm below the surface. Passive flux chambers were used to measure the loss of 1,3-D for 170 h after fumigant application. Results indicated that the cumulative loss of 1,3-D was about 48% and 28% lower in SM- and CKM-amended beds, respectively, than in the unamended beds. Overall, both isomers of 1,3-D behaved similarly in all treatments. The cumulative loss of 1,3-D, however, was not significantly different between the two manure application rates for either SM or CKM. The results of this study demonstrate the feasibility of using composted animal manures to control 1,3-D emissions.  相似文献   

12.
Abstract

We investigated the anaerobic degradation of tetracycline antibiotics (tetracycline [TC], oxytetracycline [OTC] and chlortetracycline [CTC]) in swine, cattle, and poultry manures. The manures were anaerobically digested inside polyvinyl chloride batch reactors for 64?days at room temperature. The degradation rate constants and half-lives of the parent tetracyclines were determined following first-order kinetics. For CTC the fastest degradation rate was observed in swine manure (k?=?0.016?±?0.001 d?1; half-life = 42.8?days), while the slowest degradation rate was observed in poultry litter (k?=?0.0043?±?0.001 d?1; half-life = 161?days). The half-lives of OTC ranged between 88.9 (cattle manure) and 99.0?days (poultry litter), while TC persisted the longest of the tetracycline antibiotics studied with half-lives ranging from 92.4?days (cattle manure) to 330?days (swine manure). In general, the tetracyclines were found to degrade faster in cattle manure, which had the lowest concentrations of organic matter and metals as compared to swine and poultry manures. Our results demonstrate that tetracycline antibiotics persist in the animal manure after anaerobic digestion, which can potentially lead to emergence and persistence of antibiotic resistant bacteria in the environment when anaerobic digestion byproducts are land applied for crop production.  相似文献   

13.
牛粪与小麦秸秆混合高温堆肥的腐熟进程研究   总被引:2,自引:0,他引:2  
通过研究牛粪与小麦秸秆混合高温堆肥的腐熟进程,寻求最佳的堆肥体积比,旨在为农业废弃物快速资源化利用提供科学依据。将牛粪与小麦秸秆分别按体积比10∶0、8∶2、6∶4、4∶6、2∶8混合,高温堆肥64d,研究各种处理下堆肥进程。结果表明,与纯牛粪高温堆肥相比,添加小麦秸秆可以加快堆肥升温速度,抑制高温堆肥前期pH的升高和氨气挥发,减少氮素损失,加速堆肥内有毒有害物质分解,加快C/N降低速率。其中牛粪和小麦秸秆以6∶4的体积比混合高温堆肥时效果最好,堆肥结束时有机质和速效氮下降幅度最小,分别为31.84%和18.18%,全氮、全磷、全钾、速效磷和速效钾的提高幅度最大,分别为15.86%、13.64%、9.42%、22.73%和29.30%。若以种子发芽指数80%作为堆肥腐熟的评价指标,牛粪和小麦秸秆按6∶4体积比混合高温堆肥43d即可腐熟,比纯牛粪腐熟提前了12d。综合判断,实际应用中牛粪与小麦秸秆按6∶4体积比进行高温堆肥较为适宜。  相似文献   

14.
Livestock manure applied to agricultural land is one of the ways natural steroid estrogens enter soils. To examine the impact of long-term solid beef cattle (Bos Taurus) manure on soil properties and 17β-estradiol sorption and mineralization, this study utilized a soil that had received beef cattle manure over 35 years. The 17β-estradiol was strongly sorbed and sorption significantly increased (P < 0.05) with increasing soil organic carbon content (SOC) and with an increasing annual rate of beef cattle manure. The 17β-estradiol mineralization half-life was significantly negatively correlated, and the total amount of 17β-estradiol mineralized at 90 days (MAX) was significantly positively correlated with 17β-estradiol sorption. The long-term rate of manure application had no significant effect on MAX, but the addition of fresh beef cattle manure in the laboratory resulted in significantly (P < 0.05) smaller MAX values. None of the treatments showed MAX values exceeding one-third of the 17β-estradiol applied.  相似文献   

15.
Livestock manure applied to agricultural land is one of the ways natural steroid estrogens enter soils. To examine the impact of long-term solid beef cattle (Bos Taurus) manure on soil properties and 17β-estradiol sorption and mineralization, this study utilized a soil that had received beef cattle manure over 35 years. The 17β-estradiol was strongly sorbed and sorption significantly increased (P < 0.05) with increasing soil organic carbon content (SOC) and with an increasing annual rate of beef cattle manure. The 17β-estradiol mineralization half-life was significantly negatively correlated, and the total amount of 17β-estradiol mineralized at 90 days (MAX) was significantly positively correlated with 17β-estradiol sorption. The long-term rate of manure application had no significant effect on MAX, but the addition of fresh beef cattle manure in the laboratory resulted in significantly (P < 0.05) smaller MAX values. None of the treatments showed MAX values exceeding one-third of the 17β-estradiol applied.  相似文献   

16.
A UK inventory of the nitrous oxide (N2O) emissions from farmed livestock was compiled to identify areas where potential abatement practices may be effective. Where possible, emission factors based on direct experimental data gathered under UK conditions were used, but published data were used when this was not feasible, together with statistical information, which included details of numbers of animals within each category of a species, animal liveweights, number of days housed, excretal rates and volumes of manures in stores. Total N2O emissions were calculated for each component of livestock production systems, i.e. animal houses, manure stores, following application of manures to land and during grazing. Emissions were also estimated from land used for forage conservation and tillage. Total annual N2O emissions from UK farmed livestock, based mainly on 1996 animal census data, were estimated to be 38.27 kt. The two main terms were 22.66 kt N2O from mineral fertilisers after application to soils and 5.61 kt N2O from stored manures (mainly in the form of farmyard manure). Within buildings, poultry were the largest contributors of N2O, 2.97 kt, followed by cattle, 1.62 kt. Within the total emissions from stored manures, cattle were the largest contributors of N2O, 3.58 kt, followed by poultry, 1.86 kt. Dietary manipulation and a move from solid manure based systems to slurry based systems appear to be promising abatement practices.  相似文献   

17.
Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg? 1) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg? 1) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha? 1 in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH3 volatilization. Results indicated a greater NH3 loss from soils amended with SM compared to that with PL. The cumulative NH3volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH3 was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH3 from soils. A significant portion (> 50%) of cumulative NH3 emission over 19 d occurred during the first 5–7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (≤ 5.60 Mg ha? 1) is recommended to minimize NH3 emissions.  相似文献   

18.
The goal of this study was to optimize the mixture of swine manure (SM) and cattle manure (CM) used in the vermicomposting process, seeking to increase the manure biodegradation rate and enhance the biomass production of both earthworms and higher plants. To achieve this goal, physico-chemical parameters were determined to assess the final compost quality after 50 days of vermicomposting. The different manure ratios used to produce the composts (C) were as follows (SM:CM, % m/m basis): C1 100:0, C2 (75:25), C3 (50:50), C4 (25:75), and C5 (0:100). In addition, the earthworm biomass and the phytoproductivity of lettuce (Lactuca sativa L.) plants grown in mixtures (1:1) of natural soil and the most viable vermicomposts were investigated. The C1 and C2 compost compositions were associated with high earthworm mortality rates. The C3 compost provided the highest mineral concentrations and C5 showed the highest lettuce yield (wet biomass). The results verify that stabilized cattle manure is an excellent substrate for the vermicomposting process and that fresh swine manure must be mixed with pre-stabilized cattle manure to ensure an optimized vermicomposting process, which must be controlled in terms of temperature and ammonia levels. It is concluded that small livestock farmers could add value to swine manure by applying the vermicomposting process, without the need for high investments and with a minimal requirement for management of the biodegradation process. These are important technical aspects to be considered when circular economy principles are applied to small farms.  相似文献   

19.
The transport of oxytetracycline, chlortetracycline, and ivermectin from manure was assessed via surface runoff on irrigated pasture. Surface runoff plots in the Sierra Foothills of Northern California were used to evaluate the effects of irrigation water application rates, pharmaceutical application conditions, vegetative cover, and vegetative filter strip length on the pharmaceutical discharge in surface runoff. Experiments were designed to permit the maximum potential transport of pharmaceuticals to surface runoff water, which included pre-irrigation to saturate soil, trimming grass where manure was applied, and laying a continuous manure strip perpendicular to the flow of water. However, due to high sorption of the pharmaceuticals to manure and soil, less than 0.1% of applied pharmaceuticals were detected in runoff water. Results demonstrated an increase of pharmaceutical transport in surface runoff with increased pharmaceutical concentration in manure, the concentration of pharmaceuticals in runoff water remained constant with increased irrigation flow rate, and no appreciable decrease in pharmaceutical runoff was produced with the vegetative filter strip length increased from 30.5 to 91.5 cm. Most of the applied pharmaceuticals were retained in the manure or within the upper 5 cm of soil directly beneath the manure application sites. As this study evaluated conditions for high transport potential, the data suggest that the risk for significant chlortetracycline, oxytetracycline, and ivermectin transport to surface water from cattle manure on irrigated pasture is low.  相似文献   

20.
Watershed contamination from antibiotics is becoming a critical issue because of increased numbers of confined animal-feeding operations and the use of antibiotics in animal production. To understand the fate of tylosin in manure before it is land-applied, degradation in manure lagoon slurries at 22 degrees C was studied. Tylosin disappearance followed a biphasic pattern, where rapid initial loss was followed by a slow removal phase. The 90% disappearance times for tylosin, relomycin (tylosin D), and desmycosin (tylosin B) in anaerobically incubated slurries were 30 to 130 hours. Aerating the slurries reduced the 90% disappearance times to between 12 and 26 hours. Biodegradation and abiotic degradation occur, but strong sorption to slurry solids was probably the primary mechanism of tylosin disappearance. Dihydrodesmycosin and an unknown degradate with molecular mass of m/z 934.5 were detected. Residual tylosin remained in slurry after eight months of incubation, indicating that degradation in lagoons is incomplete and that residues will enter agricultural fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号