首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Design and operating parameters, and cause and effect relationships among feedstocks and products in the pyrolysis of waste polymers are needed if this method of processing is to be used for energy recovery from waste plastics. The purpose of this study was to quantify the effect of various operating factors for the pyrolysis of common polymeric wastes. Experiments were performed using a conventional retort tube as a batch reactor. The operating factors considered were temperature and reaction time at constant heating rate. High density polyethylene (PE) and polystyrene (PS), the most common plastic waste in Korea, were used singly and in mixture.The pyrolysis time for maximum oil production from a PE-PS mixture was shorter than in the case of PE alone, showing an enhancement effect from the PS. The maximum gas production time from PE-PS mixtures was shorter than for PE alone at 500° C; above 600° C, this does not occur. Small aromatic compounds (which can be valuable) are produced at maximum with an 1:1 mixture of PE and PS at 600° C, showing the possibility of process control for the maximum recovery of desirable pyrolysis products. The maximum yield of toluene, xylene, styrene, and 1-propenyl benzene were 8.6, 8.9, 51.0 and 7.4 wt.% of feed for pyrolysis PS at 700° C, respectively. For naphthalene, it was at 700° C with 1:1 PE:PS (by wt.). The maximum recovery was 1.3 wt.%. Diels-Alder theory can explain the formation of aromatic compounds in the pyrolysis products. The yield of these secondary pyrolysis products can be controlled by reaction time, pyrolysis temperature and mixing ratio of plastic wastes in the pyrolysis feed.  相似文献   

2.
Waste plastics in the form of two examples of real world municipal solid waste plastics and a simulated mixture of municipal waste plastics were pyrolysed and liquefied under moderate temperature and pressure in a batch autoclave reactor. In addition, the five main polymers which constitute the majority of plastics occurring in European municipal solid waste comprising, polyethylene, polypropylene, polystyrene, polyethylene terephthalate and polyvinyl chloride were also reacted. The plastics were reacted under both a nitrogen (pyrolysis) and hydrogen pressure (liquefaction) and the yield and composition of products are reported. The hydrocarbon gases produced were mainly methane, ethane, propane and lower concentrations of alkene gases. A mainly oil product was produced with the mixed plastic waste with significant concentrations of aromatic compounds, including single ring aromatic compounds. The composition of the oils and gases suggested that there was significant interaction of the plastics when they were pyrolysed and liquefied as a mixture compared to the results expected from reactions of the single plastics.  相似文献   

3.
Plastics have become an indispensable ingredient of human life. They are non-biodegradable polymers of mostly containing carbon, hydrogen, and few other elements such as chlorine, nitrogen etc. Rapid growth of the world population led to increased demand of commodity plastics. High density poly ethylene is one of the largest used commodity plastics due to its vast applications in many fields. Due to its non bio degradability and low life, HDPE contributes significantly to the problem of Municipal Waste Management. To avert environment pollution of HDPE wastes, they must be recycled and recovered. On the other hand, steady depletion of fossil fuel and increased energy demand, motivated the researchers and technologists to search and develop different energy sources. Waste to energy has been a significant way to utilize the waste sustainably, simultaneously add to meet the energy demand. Plastics being petrochemical origin have inherently high calorific value. Thus they can be converted back to useful energy. Many researches have been carried out to convert the waste plastics into liquid fuel by thermal and catalytic pyrolysis and this has led to establishment of a number of successful firms converting waste plastics to liquid fuels. This paper reviews the production and consumption HDPE, different methods of recycling of plastic with special reference to chemical degradation of HDPE to fuel. This also focuses on different factors that affect these degradations, the kinetics and mechanism of this reaction.  相似文献   

4.
The global plastics production has increased annually and a substantial part is used for packaging (in Europe 39%). Most plastic packages are discarded after a relatively short service life and the resulting plastic packaging waste is subsequently landfilled, incinerated or recycled. Laws of several European and Asian countries require that plastic packaging waste collected from households has to be sorted, reprocessed, compounded and reused. These recycling schemes typically produce milled goods of poly(ethylene terephthalate) (PET), poly(ethylene) (PE), isotactic poly(propylene) (PP), mixed plastics, and agglomerates from film material. The present study documents the composition and properties of post-consumer polyolefin recyclates originating from both source separation and mechanical recovery from municipal solid refuse waste (MSRW). The overall composition by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) were determined and compared with the sorting results of the sorted fractions prior to the reprocessing into milled goods. This study shows that the collection method for the plastic packaging waste has hardly any influence on the final quality of the recyclate; however, the sorting and reprocessing steps influence the final quality of the recyclate. Although the mechanical properties of recyclate are clearly different than those of virgin polymers, changes to the sorting and reprocessing steps can improve the quality.  相似文献   

5.
The main object of this study was the investigation of the thermal recycling of commingled waste textile fibers, with the aim of the production of useful end products. Differential scanning calorimetry/Thermo gravimetric analysis (DSC/TGA) was applied to determine the thermal degradation characteristics of the commingled waste textile fibers and there are two peaks located at the temperature ranges of 299–360°C and 399–500°C. Commingled waste fiber was pyrolyzed in a nitrogen atmosphere in relation to three different temperatures (500, 600, and 700°C), heating rates (25 and 50°C min?1), and retention times (15 and 30 min). The effect of the experimental conditions such as pyrolysis temperature, heating rates, and retention time on the formation of char and gas--liquid products was investigated and the product yields were determined from the rate of the weight loss. The highest conversion rate 82.9 wt.% liquid--gas product and 17.1 wt.% char product was achieved at 700°C. Pyrolysis gases were taken for every 7, 15, and 25 min and were analyzed for major components such as CO, CO2, CH4, and H2 by gas chromatography. The pyrolysis char called as carbon black derived from the pyrolysis of commingled waste textile fibers was analyzed for a range of properties, including the elemental analysis, moisture content, ash content, calorific value, and trace metal analysis.  相似文献   

6.
等离子体热解废弃轮胎的产物包括可燃气、固体产物两部分,本文利用工业分析、元素分析、SEM扫描、XPS表面分析、NMR分析等手段考察了等离子体热解固体产物的特性,并与轮胎工业用碳黑做了对比研究。研究结果表明,废轮胎等离子体热解固体产物可作为热解碳黑进行回收利用。  相似文献   

7.
Annually 2.7 million tonnes of plastics containing Flame Retardants (FRs) are globally discarded in Waste Electrical and Electronic Equipment (WEEE). Little is known on the feasibility of closing material loops for FR plastics. Therefore, series of experiments were set up to analyze the feasibility of separating plastics containing FRs from one specific product category, namely End-of-Life (EoL) Liquid Crystal Display (LCD) TVs. The characterization of the housings of this waste stream indicated a concentration of 18 wt% Bromine based (Br) FRs and 31 wt% Phosphor based (P) FRs, the remainder not containing FRs. With practical tests it was demonstrated that, after disassembly and plastic identification, the co-polymer poly-carbonate (PC)/acrylonitrile-butadiene-styrene (ABS) containing PFR can be recycled in a closed loop system. Based on the determined plastic density distributions and separation efficiencies of optical sorters, a purity of 82% was calculated for PFR PC/ABS separated from EoL LCD TVs after size-reduction (shredding). Performed miscibility tests indicated that for this fraction at least a factor 10 dilution with virgin material is required. In addition, higher waste volumes are required for a size-reduction based treatment to become economically viable and technical challenges still need to be faced, whereas closed loop recycling of PFR PC/ABS from the current waste stream of EoL LCD TVs of different brands in a disassembly based treatment is found to be technically feasible and economically viable under European boundary conditions.  相似文献   

8.
Management of flame retarded plastics from waste electrical and electronic equipment (WEEE) has been posing a major challenge to waste management experts because of the potential environmental contamination issues especially the formation of polybrominated-dioxins and -furans (PBDD/F) during processing. In Nigeria, large quantities of electronic waste (e-waste) are currently being managed—a significant quantity of which is imported illegally as secondhand electronics. As much as 75% of these illegal imports are never reused but are rather discarded. These waste electronic devices are mostly older equipment that contains brominated flame retardants (BFRs) such as penta-brominated diphenyl ethers (PBDEs), and polybrominated biphenyls (PBBs) which are presently banned in Europe under the EU WEEE and RoHS Directives. Risk assessment studies found both to be persistent, bio-accumulative and toxic. The present management practices for waste plastics from WEEE in Nigeria, such as open burning and disposal at open dumps, creates potential for serious environmental pollution. This paper reviews the options in the environmentally sound management of waste plastics from electronic wastes. Options available include mechanical recycling, reprocessing into chemicals (chemical feedstock recycling) and energy recovery. The Creasolv® and Centrevap® processes, which are the outcome of the extensive research at achieving sound management of waste plastics from WEEE in Europe, are also reviewed. These are solvent-based methods of removing BFRs and they presently offer the best commercial and environmental option in the sound management of waste BFR-containing plastics. Because these developments have not been commercialized, WEEE and WEEE plastics are still being exported to developing countries. The industrial application of these processes and the development of eco-friendlier alternative flame retardants will help assure sound management of WEEE plastics.  相似文献   

9.
Future limitations on the availability of selected resources stress the need for increased material efficiency. In addition, in a climate-constrained world the impact of resource use on greenhouse gas emissions should be minimized. Waste management is key to achieve sustainable resource management. Ways to use resources more efficiently include prevention of waste, reuse of products and materials, and recycling of materials, while incineration and anaerobic digestion may recover part of the embodied energy of materials. This study used iWaste, a simulation model, to investigate the extent to which savings in energy consumption and CO2 emissions can be achieved in the Netherlands through recycling of waste streams versus waste incineration, and to assess the extent to which this potential is reflected in the LAP2 (currently initiated policy). Three waste streams (i.e. household waste, bulky household waste, and construction and demolition waste) and three scenarios compare current policy to scenarios that focus on high-quality recycling (Recycling+) or incineration with increased efficiency (Incineration+). The results show that aiming for more and high-quality recycling can result in emission reductions of 2.3 MtCO2 annually in the Netherlands compared to the reference situation in 2008. The main contributors to this reduction potential are found in optimizing the recycling of plastics (PET, PE and PP), textiles, paper, and organic waste. A scenario assuming a higher energy conversion efficiency of the incinerator treating the residual waste stream, achieves an emission reduction equivalent to only one third (0.7 MtCO2/year) of the reduction achieved in the Recycling+ scenario. Furthermore, the results of the study show that currently initiated policy only partially realizes the full potential identified. A focus on highest quality use of recovered materials is essential to realize the full potential energy and CO2 emission reduction identified for the Netherlands. Detailed economic and technical analyses of high quality recycling are recommended to further evaluate viable integrated waste management policies.  相似文献   

10.
Conversion of leather wastes to useful products   总被引:1,自引:0,他引:1  
The main objective of the present study is to investigate the production of useful materials from different kinds of leather waste. Three different types of tannery wastes (chromium- and vegetable-tanned shavings, and buffing dust) were pyrolyzed in a fixed bed reactor at temperatures of 450 and 600 °C under N2 atmosphere. Gas, oil, ammonium carbonate and carboneous residue were obtained by pyrolysis. The effect of temperature and type of leather waste on product distribution of pyrolysis was investigated. Buffing dust gave the highest yield of oil (ca. 23%), while other wastes recorded yields of ca. 9%. Results of elemental analysis and column chromatography showed that pyrolysis oils could be used as fuel or chemical feedstock after re-treatment. The yields of carboneous residue (chars) were between 37.5% and 48.5% and their calorific value was between 4300 and 6000 kcal kg−1, suitable for use as solid fuel. In addition, these chars were activated by CO2 to obtain the activated carbon. The activated carbon having highest surface area (799.5 m2 g−1) was obtained from chromium-tanned shavings. Activated carbons prepared from chromium-tanned leather were presented as an adsorbant for the adsorption of dyes from aqueous solution.  相似文献   

11.
The floatability of seven plastics (POM, PVC, PET, PMMA, PC, PS and ABS) in the presence of methyl cellulose (MC) and separation of plastics mixtures were investigated in this paper. It was found that the seven plastics can be separated into three groups by using the wetting agent MC. Group one includes POM and PVC. They are depressed at very low MC concentrations. Group two, including PET, PMMA and PC, has an intermediate floatability. Group three (ABS and PS) has a high floatability. They are almost not depressed within the given MC concentration range. In order to understand the mechanism of selective flotation of plastics and the chemical conditioning process, surface chemical factors, such as wettability of plastics and surface tension of flotation medium, and gravity factors, such as particle density and shape, were studied. It was found that the depressing effect of MC on plastics is ascribed mainly to its adsorption on the plastics surfaces. The MC molecules absorbed on plastics expose some of their polar groups oriented towards the aqueous phase, hence making the plastics surfaces hydrophilic. In addition, flotation selectivity for the plastics is dominated not only by wettability of plastics, but also by particle size, density and shape.  相似文献   

12.
Without public contributions, recycling from domestic waste would not be possible. In order to support recycling projects it is important to try to understand who recycles, how they recycle, and why they recycle. This paper presents the results of a structured survey of 500 members of the public served by schemes to collect plastics waste for recycling. Data were gathered on the characteristics, behaviours and motivations of recyclers. The authors also sought to discover how the public perceive plastics compared to other materials, and as a recyclable material. Responses were collected in such a way that the awareness of the recyclability of materials could be compared with the recycling behaviour of respondents. An element of comparison was introduced between those served by a system of bottle banks (bring scheme) and those covered by a household collection (collect scheme). The survey results are reported and their implications for the management of post-consumer plastics waste collection schemes are discussed.  相似文献   

13.
含油污泥的热解处理与利用   总被引:4,自引:5,他引:4  
文章对油田和炼油含油污泥进行了热解处理室内实验,测定了回收油气组成、热解残渣含碳量和Al2O3含量,开展了热解残渣对沥青的吸附性能和再生处理的絮凝性能测试分析。结果表明,含油污泥热解处理具有较好的油气回收和残渣再生利用价值,可实现污泥“零排放”,具有显著的直接经济效益和社会效益。污泥热解的产油率一般可达10%以上,废白土可达20%~30%,油回收率高;污水处理污泥热解残渣的Al2O3含量可达20%以上,有较高的铝含量,初步再生评价对污水有较好的絮凝作用,可再生循环利用;废白土热解残渣的吸附性能与活性白土相当,可循环使用。  相似文献   

14.
2010年上海世博会垃圾组分的预测   总被引:4,自引:0,他引:4  
为了便于2010年上海世博会期间生活垃圾的处理与处置,选择了和世博园区垃圾性质相近似的南京路步行街为参照区,进行垃圾组分的调研,预测模拟世博园区垃圾的组成与性质。研究结果表明:南京路步行街垃圾中食物垃圾占50%左右,塑料和纸张占45%左右,而一般的城市生活垃圾中塑料和纸张只占20%~30%左右,可见对于类似的垃圾资源化程度非常高。因此对于世博园垃圾进行分选,实现各组分垃圾的分流,可以更好地实现垃圾的资源化、减量化。  相似文献   

15.
Plastic products used for packaging are often discarded after a single use resulting in an inexhaustible supply of waste polymeric materials. The stiffness and strength of polymeric materials have been known to improve with the addition of lignocellulosic fibres available in abundance in nature. Hence, composite materials containing natural fibres and waste plastics would result in the reduction of solid wastes and the use of cheap, renewable resources. Composite specimens, consisting of waste plastics obtained from a Kerbside collection (high density polyethylene (HDPE) waste, Janitorial waste, Kerbside waste I and Kerbside waste II) and Pinus radiata woodfibres (medium density fibres (MDF)), have been produced through melt blending and injection moulding. The effects of fibre content, matrix type and interfacial bonding on the tensile and flexural properties of these composite materials have been determined through extensive testing at various conditions. The mechanical properties of these composites at room temperature and humidity depend on the amount of woodfibres, the mechanical properties of the waste plastics used and the presence of a suitable coupling agent. The tensile strengths of MDF/waste plastic composites do not generally change with fibre content except for 40% MDF/HDPE waste and 40% MDF/Kerbside waste II (plus 1% Epolene™) composites, where the tensile strengths increase by about 25% compared to those of the corresponding waste plastics. Flexural strengths of MDF/waste plastic composites increase with the addition of medium density fibres with the exception of MDF/Kerbside waste I composites. The tensile and flexural moduli of MDF/waste plastic composites mostly increase with increasing fibre content.  相似文献   

16.
The main objective of this paper is to characterise, both physically and chemically, waste electric and electronic toys, belonging to the category 7 of the Directive, 2012/19/UE, in order to obtain information about the generation and composition of this waste which is not widely found in the literature. For this, a campaign was designed with the aim of collecting a representative sample of waste toys in different schools in a Spanish town. Altogether 1014.25 kg of waste toys were collected, of which 31.83% corresponded to the electric and electronic fraction, which is the object of study. The collected wastes were divided into subcategories and a representative sample of each was one used to characterise them physically and chemically. Physical characterisation provided information about the materials they were made of, the electrical and electronic parts, fixing and assembly systems, and so forth. The results showed that the weight of a toy is comprised of 72.30% of plastics, 12.07% of electrical and electronic components, 4.47% of metals, and 11.15% other materials. In general, the most common types of polymers were PS, PP and ABS. Chemical characterisation made it possible to analyse the composition of the plastic components, which is information that is essential to be able to determine the feasibility of recovering the resulting fractions. The results showed that the content of hazardous substances in these plastics is far below the limits stipulated in Directive 2002/95/EC (RoSH Directive). The findings of this study show a need for a specific management system for this fraction of domestic wastes and a wide range of potential reusability of the discarded toys since 65% of the toys from the collected sample worked in perfect condition. We also found that the end-of-life is one of the aspects that have not been considered during their design as both materials and disassembly sequence do not facilitate the end-of-life of this type of wastes. This information could be used to improve the ecodesign of electrical and electronic equipment toys regarding their end-of-life.  相似文献   

17.
The compostability of degradable polymers under open windrow composting conditions is explored within this paper. Areas for consideration were the use of, and impacts of, degradable polyethylene (PE) sacks on the composting process and the quality of the finished compost product. These factors were investigated through polymer weight loss over the composting process, the amount of polymer residue and chemical contaminants in the finished compost product, the windrow temperature profiles and a bioassay to establish plant growth and germination levels using the final compost product. This trial also included a comparative study of the weight loss under composting conditions of two different types of ‘degradable’ polymer sacks currently on the European market: PE and a starch based product. Statistical analysis of the windrow temperature profiles has led to the development of a model, which can help to predict the expected trends in the temperature profiles of open compost windrows where the organic waste is kerbside collected using a degradable PE sack.  相似文献   

18.
A food industry waste, almond shell, was pyrolyzed under three different environment static, nitrogen, and steam to produce bio-oil and its derivatives. The oil yield obtained at pyrolysis temperature of 600°C was 24.23% in a static atmosphere, whereas it increased to 27.25% and 33.05% in nitrogen and steam atmospheres, respectively. The bio-oil obtained under steam atmosphere is very efficient due to the production of high liquid and gas yields. Moreover, co-feeding steam during the pyrolysis altered the bio-oil structure by increasing the aliphatics and reducing the asphaltenes. Moreover, steam treatment also increases H/C and heating value of bio-oils. According to the obtained results, steam pyrolysis is an alternative option for future applications in refineries.  相似文献   

19.
Mechanical separation-oriented characterization of electronic scrap   总被引:1,自引:0,他引:1  
The ever-increasing amount of electronic scrap and the steadily-decreasing contents of the precious metals used in electronics, as well as the ever-growing environmental awareness, challenges such conventional precious-metal-oriented recycling techniques as pyrometallurgy. Separation and beneficiation of various materials encountered in electronic scrap might provide a correct solution ahead. In this context, mechanical separation-oriented characterization of electronic scrap was conducted in an attempt to evaluate the amenability of mechanical separation processes. Liberation degrees of various metals from the non-metals, which are crucial for mechanical separation, were analyzed by means of a grain counting approach. It is found that the metallic particles below 2 mm achieve almost complete liberation. Particle shapes were also quantified through an image processing system. The results obtained show that the shapes of the particles, as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, separability of various materials was ascertained by a sink–float analysis. It has been shown that density-based separation techniques shall be viable in separating metals from plastics, light plastics (ABS, PS and PVC, etc.) from glass fiber reinforced resins and aluminum from heavy metals. Specifically, a high quality copper concentrate can be expected by density-based separation techniques. Moreover, FT-IR spectra of plastics pieces from the light fractions after the sink–float testing show that PC scrap primarily contains ABS, PS and PVC plastics with the density range of +1.0–1.5 g/cm3, whereas PCB scrap mainly contains glass fiber reinforced epoxy resins plastics with the density range of +1.5–2.0 g/cm3.  相似文献   

20.
The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号