首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
《Environmental Forensics》2002,3(3-4):227-241
The successful application of forensic geology to contamination studies involving natural systems requires identification of appropriate endmembers and an understanding of the geologic setting and processes affecting the systems. Studies attempting to delineate the background, or natural, source for hydrocarbon contamination in Gulf of Alaska (GOA) benthic sediments have invoked a number of potential sources, including seep oils, source rocks, and coal. Oil seeps have subsequently been questioned as significant sources of hydrocarbons present in benthic sediments of the GOA in part because the pattern of relative polycyclic aromatic hydrocarbon (PAH) abundance characteristic of benthic GOA sediments is inconsistent with patterns typical of weathered seep oils. Likewise, native coal has been dismissed in part because ratios of labile hydrocarbons to total organic carbon (e.g. PAH:TOC) for Bering River coal field (BRCF) sources are too low—i.e. the coals are over mature—to be consistent with GOA sediments. We present evidence here that native coal may have been prematurely dismissed, because BRCF coals do not adequately represent the geochemical signatures of coals elsewhere in the Kulthieth Formation. Contrary to previous thought, Kulthieth Formation coals east of the BRCF have much higher PAH:TOC ratios, and the patterns of labile hydrocarbons in these low thermal maturity coals suggest a possible genetic relationship between Kulthieth Formation coals and nearby oil seeps on the Sullivan anticline. Analyses of low-maturity Kulthieth Formation coal indicate the low maturity coal is a significant source of PAH. Source apportionment models that neglect this source will underestimate the contribution of native coals to the regional background hydrocarbon signature.  相似文献   

2.
《Environmental Forensics》2013,14(3-4):243-250
The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings (Boehm et al ., 2001) that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.  相似文献   

3.
《Environmental Forensics》2002,3(3-4):243-250
The identification and allocation of multiple hydrocarbon sources in marine sediments is best achieved using an holistic approach. Total organic carbon (TOC) is one important tool that can constrain the contributions of specific sources and rule out incorrect source allocations in cases where inputs are dominated by fossil organic carbon. In a study of the benthic sediments from Prince William Sound (PWS) and the Gulf of Alaska (GOA), we find excellent agreement between measured TOC and TOC calculated from hydrocarbon fingerprint matches of polycyclic aromatic hydrocarbons (PAH) and chemical biomarkers. Confirmation by two such independent source indicators (TOC and fingerprint matches) provides evidence that source allocations determined by the fingerprint matches are robust and that the major TOC sources have been correctly identified. Fingerprint matches quantify the hydrocarbon contributions of various sources to the benthic sediments and the degree of hydrocarbon winnowing by waves and currents. TOC contents are then calculated using source allocation results from fingerprint matches and the TOCs of contributing sources. Comparisons of the actual sediment TOC values and those calculated from source allocation support our earlier published findings (5) that the natural petrogenic hydrocarbon background in sediments in this area comes from eroding Tertiary shales and associated oil seeps along the northern GOA coast and exclude thermally mature area coals from being important contributors to the PWS background due to their high TOC content.  相似文献   

4.
《Environmental Forensics》2013,14(3-4):331-340
Prince William Sound (PWS), Alaska has an extensive history of human and industrial activity that has produced a complex organic geochemistry record in subtidal sediments of embayments throughout the sound. In addition to contributions from recent oil spills and a regional background of natural petroleum hydrocarbons originating from active hydrocarbon systems in the northern Gulf of Alaska (GOA), pyrogenic and petrogenic PAH were, and continue to be introduced to subtidal sediments at numerous sites of past and present human activities. These sites include villages, fish hatcheries, fish camps and recreational campsites in addition to abandoned settlements, canneries, sawmills, and mines. A holistic approach is used to fingerprint and quantify hydrocarbon contributions from multiple sources in a sediment sample. It involves acquiring a comprehensive understanding of the history of the area to identify potential sources, collection of representative samples, and accurate quantitative analyses of the source and sediment samples for a suite of diagnostic PAH analytes and chemical biomarker compounds. Unlike the deepwater sediments of the sound and GOA, the TOC tool, described elsewhere, does not work as well in some restricted embayments due to their high contents of recent organic matter (ROM). The current study employs a constrained least-squares algorithm to allocate hydrocarbon sources contributing to subtidal sediments collected from PWS embayments in 1991, 1999 and 2000. Results show that sources contributing to the natural petrogenic background are present in the embayments, pyrogenic hydrocarbons including combustion products of diesel are important where human activity was high, and petroleum produced from the Monterey Formation (CA) is present locally. Oil and asphalt shipped from California were widely used for fuel and construction prior to development of the Cook Inlet and North Slope fields. In certain locations that were oiled in 1989, low levels of highly degraded Alaska North Slope crude oil residues attributable to the Exxon Valdez spill remain.  相似文献   

5.
《Environmental Forensics》2002,3(3-4):331-340
Prince William Sound (PWS), Alaska has an extensive history of human and industrial activity that has produced a complex organic geochemistry record in subtidal sediments of embayments throughout the sound. In addition to contributions from recent oil spills and a regional background of natural petroleum hydrocarbons originating from active hydrocarbon systems in the northern Gulf of Alaska (GOA), pyrogenic and petrogenic PAH were, and continue to be introduced to subtidal sediments at numerous sites of past and present human activities. These sites include villages, fish hatcheries, fish camps and recreational campsites in addition to abandoned settlements, canneries, sawmills, and mines. A holistic approach is used to fingerprint and quantify hydrocarbon contributions from multiple sources in a sediment sample. It involves acquiring a comprehensive understanding of the history of the area to identify potential sources, collection of representative samples, and accurate quantitative analyses of the source and sediment samples for a suite of diagnostic PAH analytes and chemical biomarker compounds. Unlike the deepwater sediments of the sound and GOA, the TOC tool, described elsewhere, does not work as well in some restricted embayments due to their high contents of recent organic matter (ROM). The current study employs a constrained least-squares algorithm to allocate hydrocarbon sources contributing to subtidal sediments collected from PWS embayments in 1991, 1999 and 2000. Results show that sources contributing to the natural petrogenic background are present in the embayments, pyrogenic hydrocarbons including combustion products of diesel are important where human activity was high, and petroleum produced from the Monterey Formation (CA) is present locally. Oil and asphalt shipped from California were widely used for fuel and construction prior to development of the Cook Inlet and North Slope fields. In certain locations that were oiled in 1989, low levels of highly degraded Alaska North Slope crude oil residues attributable to the Exxon Valdez spill remain.  相似文献   

6.
The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1,850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin.  相似文献   

7.
《Environmental Forensics》2013,14(3-4):349-355
Assessment of environmental damage following accidental oil spills requires reliable oil identification methods. Results from hydrocarbon analyses of environmental samples are often difficult to interpret, because of the changes in oil composition (or weathering) that follows release into the environment, and because of confounding by hydrocarbons from other sources. To a first-order approximation, weathering proceeds according to simple first-order loss-rate (FOLR) kinetics for polycyclic aromatic hydrocarbons (PAH) based on molecular size. This relationship between relative weathering rate and molecular size can be exploited to infer the initial PAH composition of spilled oils, and this information can be combined with results for weathering-invariant analytes to substantially increase the precision and accuracy of hydrocarbon source recognition methods. The approach presented here evaluates a goodness-of-fit metric between the measured hydrocarbon composition of an environmental sample and a suspected source, after correcting for PAR weathering losses based on FOLR kinetics. Variability from analytical and sampling error may thus be accounted for, and source identifications can be expressed as objective probability statements. This approach is illustrated by application to four independent case studies.  相似文献   

8.
Bottom sediment and suspended sediment samples from Hamilton Harbour (western Lake Ontario) and from a major tributary were profiled using polycyclic aromatic hydrocarbons (PAH) and thia-arenes as source apportionment tracers. Ratios of selected PAH and ratios of monomethyl and dimethyl/ethyl dibenzothiophenes to the parent dibenzothiophenes were calculated. Thia-arene and PAH profiles of Standard Reference Material SRM 1649 (urban dust/organics), SRM 1650 (diesel), SRM 1597 (coal tar), Hamilton coal tar and a composite Hamilton air particulate sample provided source sample data. The gas chromatography-mass spectrometry (GC-MS) chromatograms of all sample extracts were dominated by homocyclic PAH but interpretation of PAH profiles with respect to source was difficult. In contrast, thia-arene analyses revealed more distinct differences in profiles of samples collected in different areas of the harbour, including the tributary. These results indicated that areas of coal tar-contaminated sediment are potential contributors to the overall contaminant burden of sediments and suspended sediments in Hamilton Harbour. These data also indicated that contaminants related to mobile combustion sources were entering the harbour via a major tributary.  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAH) were analyzed in surficial sediments and benthic organisms in southwestern Lake Erie near a large coal fired power plant. Sediment concentrations (530–770 ppb PAH) were relatively homogenous throughout most of the 150 km2 area, although river and nearshore concentrations reached nearly 4 ppm. Oligochaete worms and chironomid midges were near equilibrium with local sediments except for enhanced concentrations in nearshore midges.  相似文献   

10.
《Environmental Forensics》2013,14(3-4):323-329
Partial least squares (PLS) techniques are used in the re-analysis of NOAA hydrocarbon data previously investigated in Mudge (2002). New data have been provided for coal and oil signatures and these have been investigated further. The effects of zeros (less than the limit of detection) in the dataset can be overcome by addition of small values at approximately half of this limit; this then enables logarithms to be taken of the entire dataset which greatly improved the usefulness of principal component analysis (PCA). Source samples collected close to each other had different signatures, probably due to their environmental histories which was also seen when aliphatic hydrocarbons were included in the signatures. Key compounds describing each could be seen in Coomans' Plots. Signatures developed from formation oils, riperian oils and coals from the eastern Gulf of Alaska (GoA) provided mean fits to subtidal samples within PWS of 22, 19 and 38% respectively. This suggests mixed and variable sources across the sampling area. The overall conclusion must be a question regarding the partitioning between oil and coal source materials as they look very similar in this particular location.  相似文献   

11.
This 3-year study provides data on the spatial, seasonal and annual variability of hydrocarbons and total organic carbon present in marine sediments at three sites: Elkhorn Slough, Moss Landing Harbor and nearshore Monterey Bay in the vicinity of Moss Landing, California. The study provides baseline information that could be used to evaluate the potential impacts of future fuel oil releases occuring in the Moss Landing area. Groups of hydrocarbons were chosen to represent the hydrocarbon inputs into the Moss Landing area. These included the pesticide dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyl (PCB), phthalic acid ester (PAE), polycyclic aromatic hydrocarbon (PAH) and combustion PAHs (SigmaCOMBs). For SigmaDDTs, SigmaPCBs, SigmaPAEs, SigmaPAHs and SigmaCOMBs, the major sources of variability were between sites and random effects. Subsites within each site contributed little variability. No significant seasonal differences in any chemical contaminant group were found at any site. Significant seasonal differences in total organic carbon (TOC) and significant annual differences in SigmaPCBs, SigmaPAHs, SigmaCOMBs and SigmaPAEs were found at the nearshore Monterey Bay site. Significant annual differences in SigmaPAEs and TOC were found within Moss Landing Harbor, and significant annual differences in SigmaPAEs were found within the Elkhorn Slough site. Implications for future sampling designs in the Moss Landing area are that given the current baseline conditions (a stable, low rate of hydrocarbon input), a variability of 75-150 m(2) may not need to be heavily sampled. Spatial variability, not seasonal or annual variability, is the major source of hydrocarbon variability in Moss Landing sediments, although 3 years may not be long enough to establish long-term annual trends. Further research to determine the SigmaPAH spatial sampling scale for oil spills is needed.  相似文献   

12.
《Environmental Forensics》2002,3(3-4):323-329
Partial least squares (PLS) techniques are used in the re-analysis of NOAA hydrocarbon data previously investigated in 4. New data have been provided for coal and oil signatures and these have been investigated further. The effects of zeros (less than the limit of detection) in the dataset can be overcome by addition of small values at approximately half of this limit; this then enables logarithms to be taken of the entire dataset which greatly improved the usefulness of principal component analysis (PCA). Source samples collected close to each other had different signatures, probably due to their environmental histories which was also seen when aliphatic hydrocarbons were included in the signatures. Key compounds describing each could be seen in Coomans' Plots. Signatures developed from formation oils, riperian oils and coals from the eastern Gulf of Alaska (GoA) provided mean fits to subtidal samples within PWS of 22, 19 and 38% respectively. This suggests mixed and variable sources across the sampling area. The overall conclusion must be a question regarding the partitioning between oil and coal source materials as they look very similar in this particular location.  相似文献   

13.
《Environmental Forensics》2002,3(3-4):349-355
Assessment of environmental damage following accidental oil spills requires reliable oil identification methods. Results from hydrocarbon analyses of environmental samples are often difficult to interpret, because of the changes in oil composition (or weathering) that follows release into the environment, and because of confounding by hydrocarbons from other sources. To a first-order approximation, weathering proceeds according to simple first-order loss-rate (FOLR) kinetics for polycyclic aromatic hydrocarbons (PAH) based on molecular size. This relationship between relative weathering rate and molecular size can be exploited to infer the initial PAH composition of spilled oils, and this information can be combined with results for weathering-invariant analytes to substantially increase the precision and accuracy of hydrocarbon source recognition methods. The approach presented here evaluates a goodness-of-fit metric between the measured hydrocarbon composition of an environmental sample and a suspected source, after correcting for PAH weathering losses based on FOLR kinetics. Variability from analytical and sampling error may thus be accounted for, and source identifications can be expressed as objective probability statements. This approach is illustrated by application to four independent case studies.  相似文献   

14.
Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills.  相似文献   

15.
Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r2 = 0.85) than versus OC (r2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6+/-3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone.  相似文献   

16.
《Environmental Forensics》2013,14(4):287-300
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous constituents in urban sedimentary environments. The accurate characterization of their source(s) in sediments influences decisions regarding the liability for clean-up and remedial options. In this study, an extensive PAH dataset that included 50 non-alkylated (parent) and alkylated PAH groups and isomers was acquired using a modified EPA Method 8270 for the study of 5 cm intervals from 10 sediment cores (28-78 cm) obtained from the Eagle Harbor Superfund Site on Bainbridge Island, Washington. Conventional hydrocarbon "fingerprinting" and the PAH profiles in the Pb 210 age-dated cores revealed three primary PAH sources to the sediments over the past 220 years, namely (1) naturally occurring background; (2) urban runoff, and (3) creosote, the latter resulting from prior operations at the former Wyckoff wood-processing facility located on the Harbor. Naturally occurring background PAH in the pre-industrial (<1900) sediments were dominated by perylene, 1,7-dimethylphenan-threne (derived from the oxidation of abietic acid resins), and pyrogenic PAH most likely derived from historic forest fires. The concentration of PAH total in these pre-industrial sediments was consistently less than 1 mg/kg (dry). Urban runoff in the post-industrial (>1930) sediments was dominated by low but consistent concentrations (10-20 mg/kg dry) of pyrogenic PAM derived primarily from the combustion of fossil fuel(s). The creosote-impacted sediments in the post-industrialized sediments contained high concentrations (1000-140,000 mg/kg dry) of pyrogenic PAH associated with distilled, coal-derived liquids.  相似文献   

17.
Ko FC  Baker J  Fang MD  Lee CL 《Chemosphere》2007,66(2):277-285
Polycyclic aromatic hydrocarbon (PAH) concentrations in 34 surface sediments along the Susquehanna River were investigated in 2000. The total concentrations of PAHs in the surface sediments of Lake Clarke, Lake Aldred, the upper Conowingo Reservoir, and the lower Conowingo Reservoir were 3.3+/-1.5 microg g-1 (n=9), 1.6+/-1.3 microg g-1 (n=4), 9.8+/-5.5 microg g-1 (n=7), and 4.0+/-1.2 microg g-1 (n=14), respectively. These represent the first comprehensive measurement of PAHs in Susquehanna River surface sediments. Overall, total PAH concentrations were relatively lower in Lake Aldred, which is more shallow and sloped, and significantly higher in the upper Conowingo Reservoir. The sediment PAH levels were related to river flow rates, which are indirectly correlated with the particle size of the surface sediments. Total PAH levels in all the studied sites were below the effects range median (ERM) of 44.8 microg g-1 with 38% (13 of the 34 sampling sites) exceeding the effects range low (ERL) of 4.02 microg g-1. Principal component analysis indicated that variations in the PAH compound patterns of each reservoir decreased from upstream to downstream, indicating that the surface sediments were mixed along the Susquehanna River. The PAH patterns in the lower Conowingo Reservoir sediments were a combination of those upstream sources. Source analysis using isomer ratios as indicators suggested that PAHs in the Susquehanna River surface sediment are derived from the combustion of fossil fuels such as coal and gasoline with coal as the major source of contaminants.  相似文献   

18.
Concentrations, spatial distribution and sources of 17 polycyclic aromatic hydrocarbons (PAHs) and methylnaphthalene were investigated in surface sediments of rivers and an estuary in Shanghai, China. Total PAH concentrations, excluding perylene, ranged from 107 to 1707 ng/g-dw. Sedimentary PAH concentrations of the Huangpu River were higher than those of the Yangtze Estuary. The concentration of the Suzhou River was close to the average concentration of the Huangpu River. PAHs source analysis suggested that, in the Yangtze Estuary, PAHs at locations far away from cities were mainly from petrogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. In the Huangpu and Suzhou Rivers, pyrogenic input outweighed other sources. The pyrogenic PAHs in the upper reaches of the Huangpu River were mainly from the incomplete combustion of grass, wood and coal, and those in the middle and lower reaches were from vehicle and vessel exhaust.  相似文献   

19.
The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources.  相似文献   

20.
The assessment of polycyclic aromatic hydrocarbons (PAHs) contamination in surface sediments from the Yangtze estuary which is a representative area affected by anthropogenic activity (rapid industrialization, high-population density, and construction of dams upstream) in the world was systematically conducted. Fifty-one samples were analyzed by high-performance liquid chromatography (HPLC). The ??PAHs in all sediments varied from 76.9 to 2,936.8?ng?g?1. Compared with other estuaries in the world, the PAH levels in the Yangtze estuary are low to moderate. Phenanthrene, acenaphthylene, fluoranthene, and pyrene were relatively abundant. The ??PAH levels and composition varied obviously in different estuarine zones due to different sources. The highest ??PAHs concentration was observed in the nearshore of Chongming Island. The PAH composition showed that four to six ring PAHs were mainly found in the nearshore areas, while two to three ring PAHs were in the farther shore zones. The PAHs in the Yangtze estuary were derived primarily from combustion sources. A mixture of petroleum combustion and biomass combustion mainly from coal combustion and vehicle emission was the main source of PAHs from the nearshore areas, while the spill, volatilization, or combustion of petroleum from shipping process and shoreside discharge were important for PAHs in the farther shore areas. The result of potential ecotoxicological risk assessment based on sediment quality guidelines indicated low PAH ecological risk in the Yangtze estuary. The study could provide foundation for the protection of water quality of the Yangtze estuary by inducing main sources input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号