首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
This paper examines the effect of biobased chitin nanowhisker fillers on the thermal, rheological, physical, mechanical and morphological properties of biobased polylactic acid (PLA) and PLA/polyhydroxybutyrate-co-valerate (PHBV) blended nanocomposites as well as the physical, mechanical and morphological properties of porous PLA and PLA/PHBV nanocomposite foams. Solid nanocomposites of PLA, PLA/PHBV and chitin nanowhiskers were manufactured through melt blending while porous nanocomposites foams were fabricated through a batch foaming process with the aid of CO2 as blowing agent. It was found that by incorporating small quantities of chitin nanowhiskers (<2 wt%) the mechanical properties of solid specimens are improved while strength and expandability of the foam can be significantly improved, yielding a homogenously distributed cell morphology with average cell size of 1.5 μm.  相似文献   

2.
Low-density polyethylene (LDPE) was employed to improve the thermal and rheological properties as well as the supercritical CO2 foaming behavior of poly(lactic acid) (PLA) through melt mixing and batch foaming method, due to its long branched chain structure, moderate crystallization capacity and good foamability. The differential scanning calorimetry and polarized optical microscope results showed that the introduction of LDPE had a slight effect for promoting the crystallization of PLA. An important synergistic effect on the rheological properties of PLA/LDPE blends was found through rotational rheometer. With the content of LDPE, the size of spherical LDPE dispersion phase became bigger gradually, which was observed by scanning electron microscope (SEM). A very interesting cellular morphology evolution from flower-like cellular structure to complex cellular structure and then to mono-porous cell structure was found in the SEM images of the PLA/LDPE blending foams with the foaming temperature at 95 °C. The effect of blending ratio and foaming temperature on the cellular morphology and foaming parameters was investigated.  相似文献   

3.
With growing interest in the use of eco-friendly composite materials, biodegradable polymers and composites from renewable resources are gaining popularity for use in commercial applications. However, the long-term performance of these composites and the effect of compatibilization on their weathering characteristics are unknown. In this study, five types of biodegradable biopolymer/wood fiber (WF) composites were compatibilized with maleic anhydride (MA), and the effect of accelerated UV weathering on their performance was evaluated against composites without MA and neat biopolymers. The composite samples were prepared with 30 wt% wood fiber and one of the five biodegradable biobased polymer: poly(lactic) acid (PLA), polyhydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), Bioflex (PLA blend), or Solanyl (starch based). Neat and composite samples were UV weathered for 2000 h (hours), and characterized for morphological, physical, thermal, and mechanical properties before and after weathering. Compared to composites without MA, composites containing MA grafted polymers exhibited improved properties due to increased interfacial adhesion between the fiber and matrix. Upon accelerated weathering, thermal and mechanical properties of 70% of the samples substantially decreased. Surfaces of all the samples were roughened, and drastic color changes were observed. Water absorption of all the samples increased after weathering exposure. Even though the compatibilization is shown to improve composite properties before weathering, it did not affect weathering of samples, as there were no considerable differences in properties exhibited by the composites with MA and without MA after weathering. The results suggest that compatibilization improves properties of biodegradable biobased composites without affecting its UV degradation properties.  相似文献   

4.
Poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a biodegradable polymer synthesized in microorganisms. The application of PHBV is limited by certain material disadvantages. Poly(ε-caprolactone) (PCL) possesses excellent thermodynamic and mechanical properties and was used to modify PHBV in the presence of triethyl citrate (TEC) and dicumyl peroxide (DCP), which was used as plasticizer and grafting agent, respectively. The effects of PCL and additive agents on the mechanical, thermal, amphipathic and degradability behaviors of the blends were investigated. The results showed that the mechanical properties of the PHBV blends improved by PCL incorporation and improved even further after TEC and DCP addition. The addition of DCP could not induce an increase in crystallization temperature but improved the crystallization degree of the blends. The presence of hydrophilic groups in TEC leads to an apparent increases in the hydrophilicity of the PHBV blends. A PHBV/PCL blend (40/60) with TEC (20 wt.%) and DCP (0.5 wt.%) was chosen for its good mechanical properties and hydrophilicity. The chosen ratio of the blends was also shown a preferable degradation activity by biodegradation assay using Pseudomonas mendocina. The addition of TEC and DCP has no conspicuous negative effect on the biodegradation.  相似文献   

5.
Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactide (PLA) with different PHBV/PLA weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were prepared by melt compounding. Their mutual contributions in terms of thermal stability, flammability resistance, mechanical properties and rheological behavior were investigated. The study showed that the increase in PLA content in PHBV/PLA blends leads to enhanced properties. Consequently, thermal stability and flammability resistance were improved. Further, the rheological measurements indicated an increase in storage modulus and loss modulus of PHBV matrix by addition of PLA.  相似文献   

6.
Reactive Blending of Biodegradable Polymers: PLA and Starch   总被引:11,自引:0,他引:11  
Poly(lactic acid) (PLA) and starch are important biodegradable polymers. Mechanical properties of blends of PLA and starch using conventional processes were very poor because of incompatibility. In this study, PLA and starch were blended with a reactive agent during the extrusion process. The affects of the reactive blending were investigated and significant improvements were confirmed by measuring the tensile strength and elongation at break, IR spectra, and DSC.  相似文献   

7.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a semi-polycrystalline biopolymer from the polyhydroxyalkanonate family has in recent years become a commercial bioplastic with mechanical properties comparable to isotactic polypropylene and enhanced O2, CO2 and H2O barrier properties. However, its brittleness and sensitivity to thermal and hydrolysis degradations restrict its applications. To overcome the problems associated with degradation during processing blending of PHBV and an epoxy-functionalized chain extender (Joncryl® ADR-4368 S) was conducted in a twin screw extruder. The effect of concentration of the chain extender on thermal, crystallization and rheological behaviours of PHBV was investigated. Thermal gravimetric analysis results indicated improvement in the resistance to thermal decomposition of PHBV by introducing the chain extender. This was accompanied with calculation of thermal degradation activation energy (Ea) using the Flyn–Walls–Ozawa method which confirmed increase of Ea with the increase in content of the chain extender. The rheological behaviour and crystallization of modified PHBV was characterized by rotational rheometry and differential scanning calorimetry techniques, respectively. The results show that addition of chain extender enhanced viscosity of PHBV and also reduce the rate of crystallization.  相似文献   

8.
This paper investigated the influence of TiO2 nanoparticles on the morphologies, as well as crystallization behaviour and kinetics, of neat PLA and PCL, and of these polymers in different PLA/PCL blends. We used transmission electron microscopy to evaluate the morphologies of the systems, while the crystallization behaviour and kinetics were investigated through differential scanning calorimetry (DSC). In addition to standard and modulated (StepScan) DSC analyses, the self-nucleation temperatures of neat PCL and PCL in the different nanocomposites were determined, followed by a self-nucleation and annealing thermal fractionation analysis of PCL crystallization and an Avrami isothermal kinetic analysis of PCL crystallization and PLA cold crystallization. We found that the nanoparticles were well dispersed, but only in the PLA phase of the blends, with only a few on the interface or in the PCL phase. They did nucleate and accelerate, and influence the mechanism of, the PCL crystallization in neat PCL, but had little influence on PCL crystallization in the blends. They strongly influenced the rate of cold crystallization of PLA, but had little influence on this parameter in the blends. The tensile properties were also determined, and changes in these properties could be related to the morphologies of the systems.  相似文献   

9.
Poly(hydroxybutyrate-co-valerate) (PHBV) is a completely biodegradable thermoplastic polyester produced by microbial fermentation. The current market price of PHBV is significantly higher than that of commodity plastics such as polyethylene and polystyrene. It is therefore desirable to develop low-cost PHBV based materials to improve market opportunities for PHBV. We have produced low-cost environmentally compatible materials by blending PHBV with granular starch and environmentally benign CaCO3. Such materials can be used for specific applications where product biodegradability is a key factor and where certain mechanical properties can be compromised at the expense of lower cost. The inclusion of granular starch (25 wt%) and CaCO3 (10 wt%) in a PHBV matrix (8% HV, 5% plasticizer) reduces the cost by approximately 40% and has a tensile strength of 16 MPa and flexural modulus of 2.0 Gpa, while the unfilled PHBV/plasticizer matrix has a tensile strength of 27 MPa and a flexural modulus of 1.6 GPa.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

10.
There is great interest in developing eco-friendly green biocomposites from plant-derived natural fibers and crop-derived bioplastics attributable to their renewable resource-based origin and biodegradable nature. Fully biodegradable composites, made from both biodegradable polymeric matrices and natural fibers, should be advantageous in some applications, such as one way packaging. Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable polymers produced from a wide range of microorganisms, with poly(3-hydroxybutyrate) P(3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) being important examples of PHAs. In this work, biocomposites of PHBV consisting of a PHBV matrix incorporating peach palm particles (PPp), [i.e., 100/0, 90/10, 80/20 and 75/25 (%w/w) PHBV/PPp] were processed by injection molding at 160 °C. The effect of PPp loading on the thermal and the mechanical properties, as well as on the morphological behavior of the PHBV/PPp biocomposites was investigated. Soil biodegradation tests were carried out by burying specimen beakers containing aged soil and kept under controlled temperature and humidity in accordance with ASTM G160-98. Degradation of the biocomposites was evaluated by visual analysis, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) following test exposures of up to 5 months. The addition of PPp reduced the maximum strength and the elongation at break of the biocomposites. On the other hand, the Young’s modulus improved with the PPp content. Micrographs of the fracture surfaces following tensile strength testing revealed a large distance between the PHBV matrix and PPp particles although a low interaction is expected. Where measured, these distances tended increase as the PPp content of the biocomposites increased. Soil biodegradation tests indicated that the biocomposites degraded faster than the neat polymer due to the presence of cavities that resulted from introduction of the PPp and that degradation increased with increasing PPp content. These voids allowed for enhanced water adsorption and greater internal access to the soil-borne degrader microorganisms.  相似文献   

11.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

12.
The use of fully bio-based and biodegradable materials for massive applications, such as food packaging, is an emerging tendency in polymer research. But the formulations proposed in this way should preserve or even increase the functional properties of conventional polymers, such as transparency, homogeneity, mechanical properties and low migration of their components to foodstuff. This is not always trivial, in particular when brittle biopolymers, such as poly(lactic acid) (PLA), are considered. In this work the formulation of innovative materials based on PLA modified with highly compatible plasticizers, i.e. oligomers of lactic acid (OLAs) is proposed. Three different synthesis conditions for OLAs were tested and the resulting additives were further blended with commercial PLA obtaining transparent and ductile materials, able for films manufacturing. These materials were tested in their structural, thermal and tensile properties and the best formulation among the three materials was selected. OLA with molar mass (Mn) around 1,000 Da is proposed as an innovative and fully compatible and biodegradable plasticizer for PLA, able to replace conventional plasticizers (phthalates, adipates or citrates) currently used for films manufacturing in food packaging applications.  相似文献   

13.
The water vapor transmission rates (WVTR) of several biodegradable polymers were evaluated to determine their suitability as water-resistant coatings and to understand WVTR better in terms of polymer structure. Values of WVTR at 25‡C ranged from 13 to 2900 g/m2 /day and increased in the order PHBV PLA (cryst.) PLA (amorph.) PCL Bionolle BAK 1095 CAP CA. Values of WVTR were positively correlated with higher polymer solubility parameters, lower crystallinities, and higher free volumes. Although the WVTR of biodegradable polymers are much higher than those of good barrier materials such as low-density polyethylene, they are sufficient for short-term (hours to days) protection of polysaccharide-based materials against water. Product names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

14.
The aim of this work was to evaluate the effect of different plasticizers on the morphology, crystallization, and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/organomodified montmorillonite (OMt) nanocomposites. We investigated three different plasticizers: dioctyl phthalate (DOP), a commonly used additive in the polymer industry, and two natural and biodegradable plasticizers: epoxidized soybean oil (ESO) and triethyl citrate (TEC). The nanocomposites with 3 wt% OMt were obtained by melt processing in an internal mixer. The plasticizers were used alone or in combination with clay in a concentration of 10 wt%. X-ray diffraction and scanning electron microscopy results revealed a partially intercalated structure. The degree of crystallinity was higher for all of the samples compared to neat PHBV, although the melting temperature decreased with the use of plasticizers combined with OMt. The impact strength results were dependent on the interaction between the components of the system. Triethyl citrate was the most effective plasticizer due to its more pronounced interaction with the PHBV matrix, which yielded improvements in processing conditions and PHBV’s flexibility and impact properties.  相似文献   

15.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) are biodegradable polyesters and can be blended by twin-screw extrusion. Epoxy-functional styrene acrylic copolymer (ESA) was used as reactive agent for PLA/PBAT blends and the mechanical properties, phase morphology, thermal properties, melt properties, and melt rheological behaviors of the blends were investigated. During thermal extrusion, ESA was mainly a chain extender for the PLA matrix but had no evident reaction with PBAT. The great improvement in the toughness of PLA based blends was achieved by the addition of PBAT of no less than 15 wt% and that of ESA of no more than 0.5 wt%. Although SEM micrographs and the reduced deviation of the terminal slope of G′ and G″ indicated better compatibility and adhesion between the two phases, the blend with ESA was still a two-phase system as indicated in DSC curves. Rheological results reveal that the addition of ESA increased the storage modulus (G′), loss modulus (G″) and complex viscosity of the blend at nearly all frequencies. The melt strength and melt elasticity of the blend are improved by addition of ESA.  相似文献   

16.
Biodegradable and ecologically friendly polymer materials attract great attention of many scientific groups in the world as they fit well in the sustainable development policy and are considered to be “a right thing to do” by the general public. Such polymers can be modified by the addition of different fillers, favorably of natural origin. In the paper we provide a comparison between composites based on two biodegradable polymers: poly(lactic acid)—biodegradable, natural stock polymer and poly(butylene succinate)—biodegradable polymer produced from fossil based materials. For each polymer we have prepared a series of composites with different fibres (natural: hemp and flax, and manmade: Cordenka) and different filler loadings. To fully characterize obtained materials thermal, mechanical and surface free energy measurements were performed, completed with morphology observations and an attempt to compare the experimental data for tensile measurements with values obtained using the modified rule of mixtures. The tensile results calculated using the modified rule of mixture for below 30% fibre loading are found to be fitting the experimental data. Composites mechanical properties and morphology were strongly affected by the type of fibre used and its loading, however thermal properties remained almost unchanged. In specific, Cordenka fibres tend to form bunches which presence greatly influences the mechanical properties but still our studies have shown clear advantage of manmade Cordenka fibres over the hemp and flax fibres when considering distribution and fibre–polymer interaction.  相似文献   

17.
The potential use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/graphite nanosheets (GNS) as a biodegradable nanocomposite has been explored. PHBV/GNS nanocomposites films were prepared by solution casting at various concentrations of GNS—0.25, 0.50 and 1.00 wt% GNS. The films were exposed to artificial ultraviolet radiation (UV) during 52 h. The effect of GNS on PHBV photodegradation was investigated and compared to neat PHBV film. The artificial photodegradation induced changes in physical (weight loss), chemical carbonyl index by Fourier transform infrared spectroscopy, thermal degree of crystallinity and melting temperature by differential scanning calorimetry and morphological scanning electron microscopy characteristics. Based on the results obtained from aforementioned analyzes it was verified that GNS inhibits the oxidative degradation of PHBV matrix.  相似文献   

18.
There has been considerable interest in the use of the biodegradable polymer poly(lactic acid) (PLA) as a replacement for petroleum derived polymers due to ease of processability and its high mechanical strength. Other material properties have however limited its wider application. These include its brittle properties, low impact strength and yellow tint. In an attempt to overcome these drawbacks, PLA was blended with four commercially available additives, commonly known as masterbatches. The effect of the addition of 1.5 wt% of the four masterbatches on the mechanical, thermal, optical and surface properties of the polymer was evaluated. All four masterbatches had a slight negative effect on the tensile strength of PLA (3–5% reduction). There was a four fold increase in impact resistance however with the addition of one of the masterbatches. Differential scanning calorimetry demonstrated that this increase corresponded to a decrease in the polymer crystallinity. However there was an associated increase in polymer haze with the addition of this masterbatch. The clarity of PLA was improved through the addition of an optical brightener masterbatch, but the impact resistance remained low. The glass transition and melting temperatures of PLA were not affected by the addition of the masterbatches, and no change was observed in surface energy. Some delay in PLA degradation, in a PBS degradation medium at 50 °C, was observed due to blending with these masterbatches.  相似文献   

19.
The structural, thermal, mechanical, and biodegradable properties of composite materials made from polylactide (PLA) and agricultural residues (arrowroot (Maranta arundinacea) fibre, AF) were evaluated. Melt blended glycidyl methacrylate-grafted polylactide (PLA-g-GMA) and coupling agent-treated arrowroot fibre (TAF) formed the PLA-g-GMA/TAF composite, which had better properties than the PLA/AF composite. The water resistance of the PLA-g-GMA/TAF composite was greater than that of the PLA/AF composite; the release of PLA in water from the PLA/AF and PLA-g-GMA/TAF composites indicated good biological activity. The PLA-g-GMA/TAF material had better mechanical properties than PLA/AF. This behaviour was attributed to better compatibility between the grafted polymer and TAF. The results indicated that the Tg of PLA was increased by the addition of fibre, which may have improved the heat resistance of PLA. Furthermore, the mass losses following burial in soil compost indicated that both materials were biodegradable, especially at high levels of AF or TAF substitution.  相似文献   

20.
In this work, rigid polyisocyanurate foams were prepared at partial substitution (0–70 wt%) of commercially available petrochemical polyol, with previously synthesized biopolyol based on crude glycerol and castor oil. Influence of the biopolyol content on morphology, chemical structure, static and dynamic mechanical properties, thermal insulation properties, thermal stability and flammability was investigated. Incorporation of 35 wt% of crude glycerol-based polyol had reduced average cell size by more than 30% and slightly increased closed cell content, simultaneously reducing thermal conductivity coefficient of foam by 12% and inhibiting their thermal aging. Applied modifications showed also positive impact on the mechanical performance of rigid foams. Increase of crosslink density resulted in enhancement of compressive strength by more than 100%. Incorporation of prepared biopolyol resulted in enhancement of thermal stability and changes in degradation pathway. Up to 35 wt% share of crude glycerol-based polyol, foams showed similar flammability as reference sample, which can be considered very beneficial from the environmental point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号