首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) blend nanocomposites were prepared using melt blending technique followed by compression moulding. The blend nanocomposites were prepared with a variation of PBAT loading along with maleic anhydride and benzoyl peroxide ranging from 5 to 20 wt% along with two different commercially available nanoclays cloisite 93A and cloisite 30B (C30B) at 3 wt% loading. The maleic anhydride and benzoyl peroxide were used during the melt blending of the blend nanocomposites as a compatibilizer and as an accelerator respectively. Maleic anhydride used to enhance the compatibility of the PLA/PBAT blend and as well as the uniform adhesion of the nanoclays with them. The properties and characterizations of PLA matrix and the PLA/PBAT blend nanocomposites have been studied. The tensile strength, % elongation and impact strength increased with the preparation of PLA/PBAT blend nanocomposites as compared with PLA matrix. PLA/PBAT/C30B blend nanocomposites exhibited optimum tensile strength at 15 wt% of PBAT loading. Differential scanning calorimetry and thermogravimetric analysis also showed improved thermal properties as compared with virgin PLA. The wide angle X-ray diffraction studies indicated an increase in d-spacing in PLA/PBAT/C30B blend nanocomposite thus revealing intercalated morphology.  相似文献   

2.
Two biodegradable polyesters, poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) were melt-compounded in a twin screw extruder to fabricate a novel PBS/PBAT blend. The compatibility of the blend was attributed to the transesterification reaction that was confirmed by Fourier transform infrared spectroscopy. The Gibbs free energy equation was applied to explain the miscibility of the resulting blend. Dynamic mechanical analysis of the blends exhibits an intermediate tanδ peak compared to the individual components which suggests that the blend achieved compatibility. One of the key findings is that the tensile strength of the optimized blend is higher than each of the blended partner. Rheological properties revealed a strong shear-thinning tendency of the blend by the addition of PBAT into PBS. The phase morphology of the blends was observed through scanning electron microscopy, which revealed that phase separation occurred in the blends. The spherulite growth in the blends was highly influenced by the crystallization temperature and composition. In addition, the presence of a dispersed amorphous phase was found to be a hindrance to the spherulite growth, which was confirmed by polarizing optical microscopy. Furthermore, the increased crystallization ability of PBAT in the blend systems gives the blend a balanced thermal resistance property.  相似文献   

3.
Melt extrusion was used to obtain thermoplastic corn gluten meal (tCGM) blends from plasticized corn gluten meal (pCGM) and poly(butylene adipate-co-terephthalate) (PBAT). Dynamic rheological tests, morphology and spectroscopy were employed to understand the effect of the plasticization and destructurization of corn gluten meal (CGM) on tCGM blends. Rheological data showed a plateau in the low frequencies for tCGM blends demonstrating network formation which responds elastically over long timescales. Also, complex viscosity data showed the existing of shear thinning for PBAT and PBAT–CGM blend. Furthermore, rheology and morphology showed the synergistic influence of plasticization and destructuralization of CGM on the phase structure development of the blends. In addition, it was found for unmodified CGM–PBAT blend there was significant frequency dependence for G′ indicating it just acted as filler for PBAT matrix. FTIR studies showed that the urea has helped in unfolding the corn protein and facilitated hydrogen bonding interactions with PBAT. Tensile properties showed an improvement in tCGM blends when compared unmodified CGM blend. Tensile strength of tCGM blends was almost same as that of the neat PBAT matrix. Percent elongation, a strong reflection of the state of interface in the blends has showed higher values, indicating strong interactions between the PBAT and pCGM in the blend system.  相似文献   

4.
Natural rubber grafted with poly(vinyl acetate) copolymer (NR-g-PVAc) was synthesized by emulsion polymerization. Three graft copolymers were prepared with different PVAc contents: 1 % (G1), 5 % (G5) and 12 % (G12). Poly(lactic acid) (PLA) was melt blended with natural rubber (NR) and/or NR-g-PVAc in a twin screw extruder. The blends contained 10–20 wt% rubber. The notched Izod impact strength and tensile properties were determined from the compression molded specimens. The effect of NR mastication on the mechanical properties of the PLA/NR/NR-g-PVAc blend was evaluated. Characterization by DMTA and DSC showed an enhancement in miscibility of the PLA/NR-g-PVAc blend. The temperature of the maximum tan δ of the PLA decreased with increasing PVAc content in the graft copolymer, i.e., from 71 °C (pure PLA) to 63 °C (the blend containing 10 % G12). The increase in miscibility brought about a reduction in the rubber particle diameter. These changes were attributed to the enhancement of toughness and ductility of PLA after blending with NR-g-PVAc. Therefore, NR-g-PVAc could be used as a toughening agent of PLA and as a compatibilizer of the PLA/NR blend. NR mastication was an efficient method for increasing the toughness and ductility of the blends which depended on the blend composition and the number of mastications.  相似文献   

5.
The blends of polylactide (PLA) and poly(ethylene glycol) (PEG) with different contents (0, 5, 10, 15, and 20 wt%) and molecular weights (\( \overline{M}_{w} \) 6000, 10,000 and 20,000, called respectively as PEG 6000, PEG 10,000, and PEG 20,000) were prepared by means of melt blending method. The effects of tensile speed, content and molecular weight of the PEG on the tensile properties of the PLA/PEG blends were investigated using a universal testing machine at 24 °C. With increasing tensile speed, the tensile modulus, strength and stress at break of the PLA/PEG blends marginally increased, while the tensile modulus and stress at break declined non-linearly, and the tensile strength dropped nearly linearly with increasing PEG 10,000 content. When the PEG 10,000 content was 5–15 wt%, the tensile strain at break of the PLA/PEG 10,000 blend markedly increased, and then decreased as the PEG 10,000 content exceeded 15 wt%. With increasing the molecular weight of PEG, tensile modulus and strength increased, whereas the tensile strain at break decreased. This showed that the application of right amount of lower molecular weight PEG was more conducive to improving the tensile toughness of the PLA/PEG blends, which was attributed to its better miscibility with PLA and increased mobility of PLA molecular chains.  相似文献   

6.
“Green”/bio-based blends of poly(lactic acid) (PLA) and cellulolytic enzyme lignin (CEL) were prepared by twin-screw extrusion blending. The mechanical and thermal properties and the morphology of the blends were investigated. It was found that the Young’s modulus of the PLA/CEL blends is significantly higher than that of the neat PLA and the Shore hardness is also somewhat improved. However, the tensile strength, the elongation at break, and the impact strength are slightly decreased. Thermogravimetric analysis (TGA) shows that the thermal stability of the PLA is not significantly affected by the incorporation of the CEL, even with 40 wt% CEL. The results of FT-IR and SEM reveal that the CEL and the PLA are miscible and there are efficient interactions at the interfaces between them. These findings show that the CEL is a kind of feasible filler for the PLA-based blends.  相似文献   

7.
A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend.  相似文献   

8.
The rheologies, morphologies, crystallization behaviors, mechanical and thermal properties of poly(lactic acid) (PLA)/polypropylene (PP) blends and PLA/PP/maleic anhydride-grafted PP (MAPP) blends were investigated. The results showed that the complex viscosities of PLA/PP blends were between those of neat PLA and neat PP, and MAPP had a thinning effect on those of the blends. PLA/PP blends exhibited the distinct phase separation morphologies due to the limited partial miscibility of the blend components. MAPP slightly improved the miscibility between PLA and PP. Both the cold crystallization of PLA component and melt crystallization of PP component were enhanced, probably because PLA and PP were reciprocal nucleating agents. The tensile strength and flexural modulus decreased, while the tensile strain at break and heat deflection temperature (HDT) increased with the increasing PP content. MAPP had the positive effects on the notched impact strength and HDT of PLA-rich blends and also increased the flexural modulus of the binary blends. The thermal stability of the blend was improved by PP, and the incorporation of MAPP further enhanced the thermal stability.  相似文献   

9.
Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactide (PLA) with different PHBV/PLA weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were prepared by melt compounding. Their mutual contributions in terms of thermal stability, flammability resistance, mechanical properties and rheological behavior were investigated. The study showed that the increase in PLA content in PHBV/PLA blends leads to enhanced properties. Consequently, thermal stability and flammability resistance were improved. Further, the rheological measurements indicated an increase in storage modulus and loss modulus of PHBV matrix by addition of PLA.  相似文献   

10.
In attempt to enhance the compatibility of NR in PLA matrix, and furthermore to enhance mechanical properties of PLA, PLA/NR blends with strong interaction were prepared in Haake internal mixer, using dicumyl peroxide (DCP) as cross-linker. The effects of dicumyl peroxide on morphology, thermal properties, mechanical properties and rheological properties of PLA and PLA/NR blends were studied. The results indicated that dicumyl peroxide could increase the compatibility of poly(lactic acid) and natural rubber. With small amount of dicumyl peroxide, the effect on NR toughening PLA was enhanced and the tensile toughness of PLA/NR blends was improved. When the DCP content was up to 0.2 wt%, the PLA/NR blend reached the maximum elongation at break (26.21 %) which was 2.5 times of that of neat PLA (the elongation at break of neat PLA was 10.7 %). Meanwhile, with introducing 2 wt% DCP into PLA/NR blend, the maximum Charpy impact strength (7.36 kJ/m2) could be achieved which was 1.8 times of that of neat PLA (4.18 kJ/m2). Moreover, adding adequate amount of DCP could improve the processing properties of blends: the viscosity of PLA/NR blend decreased significantly and the lowest viscosity of the blends could be achieved when the DCP content was 0.5 wt%.  相似文献   

11.
Poly(lactic acid) (PLA) has been modified using twin-screw reactive extrusion to improve its melt properties and crystallinity. In this work lauroyl peroxide was used as an alkyl free radical source, abstracting hydrogen atoms from the PLA backbone leading to branching and chain extension reactions. Once the linear viscoelastic region was determined for these polymers, changes in dynamic rheology (dynamic viscosity real and loss modulus) were measured. Gel permeation chromatography showed that the molecular weight and polydispersity increased to a maximum with the addition of 1.00 and 0.50?wt% peroxide, respectively. Low temperature ?? transitions in dynamical mechanical thermal traces gave further evidence that branching had also occurred. G?ttfert Rheotens measurements showed a three fold increase in melt strength due to both increased chain length and branching. Thermal analysis showed the level of crystallisation had decreased also possibly due to branching. Reductions in crystallinity and improved melt strength are known to be critical for film and foam formation.  相似文献   

12.
In this work, two processing aids, acetyl tri-n-butyl citrate and an alkene bis fatty amide (wax), were investigated for their effects on rheological properties, morphology, thermal transition temperatures, and mechanical properties of the poly(lactic acid) (PLA)/soy protein concentrate blends. Acetyl tri-n-butyl citrate and alkene bis fatty amide played different roles in improving the processability of the blends, with the former functioning as a plasticizer for PLA and the latter as an internal/external lubricant. The amide wax was more effective in reducing blend melt viscosity through its dual functions of internal and external lubrication. Acetyl tri-n-butyl citrate displayed a stronger effect in facilitating PLA nucleation than the amide wax. Both processing aids decreased tensile strength and modulus of the blends and increased break strain and impact strength.  相似文献   

13.
In this study, poly(l-lactide) (PLA) films were fabricated by melt processing and the plasticizing effect of hexadecyl lactate (HL) (0, 5, 7.5, 10, and 12.5 wt% on PLA were investigated by scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, tensile, transparency, and water vapor permeability tests. The SEM analysis revealed that PLA with 10 wt% HL appeared uniform with extra small bumps, confirmed the interaction between PLA and HL. The thermal analysis revealed a glass transition temperature of 57.4 °C for neat PLA film, but the addition of HL elicited a decrease in the temperature of the peak (43.8 °C). The incorporation of plasticizer into PLA resulted in the increase of elongation at break, as well as the decrease of tensile strength and tensile modulus. Even though a decrease in transparency was recorded, the PLA/HL blend films appeared transparent by visually observation. The water vapor permeability of PLA/HL blend films increased with the increase of HL. The PLA/HL blend films could effectively extend the shelf-life of fresh-cut pears as the commercial low density polyethylene films. The results indicated that the properties of PLA films can be modified with the addition of HL and PLA/HL blend films could serve as an alternative as food packaging materials to reduce environmental problems associated with synthetic packaging films.  相似文献   

14.
Poly(lactic acid) (PLA) has gained considerable attention nowadays as a biocompatible polymer owing to its advantage of being prepared from renewable resources. PLA exhibits excellent tensile strength, fabricability, thermal plasticity and biocompatibility properties comparable to many petroleum based plastics. However, low heat distortion temperature, brittleness and slow crystallization rate limit the practical applications of PLA. In order to address these limitations, an attempt has been made in the current work to prepare binary blends of PLA with ethylene vinyl acetate (EVA) at different compositions via melt mixing technique. Systematic investigation on the mechanical properties, thermal degradation and crystallization behavior for PLA-EVA blends was carried out. The impact strength of binary blends of PLA–EVA was found to increase significantly by 176% for 15 wt% of EVA compared to virgin PLA. This is due to the strong interfacial adhesion among PLA and EVA resulting in brittle to ductile transition. Scanning electron microscopy analysis for impact fractured surfaces of binary blends of PLA implied the toughening effect of PLA by EVA. Thermogravimetry analysis results revealed that the activation energy of PLA–EVA blends decreased with increase in EVA content in the PLA matrix. While, differential scanning calorimetry results obtained for PLA–EVA blends revealed the improvement in crystallinity when compared with neat PLA. The effect of EVA on non-isothermal melt crystallization kinetics of PLA was also examined via DSC at various heating rates. Decreasing trend in the t1/2 values indicated the faster rate of crystallization mechanism after addition of EVA in the PLA matrix.  相似文献   

15.
Natural rubber (NR) with polycaprolactone (PCL) core–shell (NR-ad-PCL), synthesized by admicellar polymerization, was acted as an impact modifier for poly(lactic acid) (PLA). PLA and NR-ad-PCL were melt-blended using a co-rotating twin screw extruder. The morphology of PLA/NR-ad-PCL blends showed good adhesion as smooth boundary around rubber particles and PLA matrix. Only 5 wt% of rubber phase, NR-ad-PCL was more effective than NR to enhance toughness and mechanical properties of PLA. The contents of the NR-ad-PCL were varied from 5, 10, 15 and 20 wt%. From thermal results, the incorporation of the NR-ad-PCL decreased the glass transition temperature and slightly increased degree of crystallinity of PLA. Mechanical properties of the PLA/NR-ad-PCL blends were investigated by dynamic mechanical analyser, pendulum impact tester and universal testing machine for tension and flexural properties. The increasing NR-ad-PCL contents led to decreasing Young’s and storage moduli but increasing loss modulus. Impact strength and elongation at break of the PLA/NR-ad-PCL blends increased with increasing NR-ad-PCL content up to 15 wt% where the maximum impact strength was about three times higher than that of pure PLA and the elongation at break increased to 79%.  相似文献   

16.
Poly(lactic acid) (PLA) was blended with chemically modified Polyhydroxyoctanoate (mPHO) using a Haake twin-screw mixer. Due to the melt viscosity disparity between the two components, PHO was reacted with Hexamethylene diisocyanate (HDI) used as a chain extender to produce high molecular weight for improving compatibility and processability with PLA. The number average and weight average molecular weight of the PHO, reacted with 0.55 wt% HDI, were increased 314 and 275%, respectively, compared with those of the unmodified PHO. The blends were characterized for rheological, thermal, and mechanical properties. Infrared spectra confirmed the formation of the urethane linkages in mPHO. The shear viscosity, as a function of shear rate or shear stress, decreased with an increase in mPHO content, indicating that the PLA/mPHO blends show shear-thinning behavior along with the power-law model. DSC thermograms showed that the two components in the blends were found with two crystalline phases and two amorphous phases confirming the coexistence of two immiscible components. Tensile results indicated that tensile strength for blends decreased with increasing mPHO content up to 80%. A decrease in elastic modulus, as well as an increase in elongation at break, was seen as a function of mPHO content. Results of aging tests showed that the mechanical properties of the blends also dropped more at a higher PLA level when compared with those of the unaged samples.  相似文献   

17.
Blending of polylactide (PLA) with low stereoregularity and polyhedral oligomeric silsesquioxane grafted with arms of poly(ethylene glycol) methyl ether, acting as a plasticizer, allowed us previously to obtain a novel stable elastomeric-like material. The present contribution focuses on the properties of semi-crystalline PLA plasticized with this compound. Melt blends of PLA with 5–15 wt% of the plasticizer, were compression molded, quenched and annealed, which enabled cold-crystallization. The glass transition temperature of the blends and their drawability depended on their crystallinity and plasticizer content. The best ductility was reached at the plasticizer content of 15 wt%; the achieved strain at break was 6.5 (650%) and 1.3 (130%), for the quenched and annealed material, respectively. The latter value exceeded 20 times the strain at break of neat crystalline PLA. The tensile toughness of the annealed 15 wt% blend was 12 times larger than that of crystalline PLA. Moreover, annealing of 15 wt% blend improved its yield strength by 40%. Despite the two peaks of the loss modulus, indicating the two glass transitions in this blend, no heterogeneities were found by scanning electron microscopy, indicating that the plasticizer enriched phase formed instead of distinct inclusions of the plasticizer.  相似文献   

18.
Soy meal, a co-product of the soy oil-based biodiesel industry, has up to 50 % protein content. The main aim of this work was to develop value-added application for soy meal. Soy meal was plasticized by glycerol and water, denatured by the addition of guanidine hydrochloride (GHCl), and then blended with poly (butylene adipate-co-terephthalate) (PBAT), petroleum based tough biodegradable polymer. Characterization by FTIR spectroscopy confirmed that soy meal was plasticized and denatured. The blends of PBAT/soy meal (SM), PBAT/plasticized soy meal and PBAT/GHCl modified plasticized soy meal (mPSM) were fabricated by industry prevalent extrusion and injection molding process. The developed bioblends were characterized by thermal and mechanical testing. One of the important outcomes of this research was that elongation of the bioblend was found to increase by 80 % after plasticization and denaturation of soy meal. Scanning electron microscope analysis showed that PBAT/mPSM blends have smoother surfaces and better internal structures than the other two.  相似文献   

19.
Poly(lactic acid) (PLA) presents high strength and modulus, but very low toughness as well as slow crystallization. Natural rubber (NR) was blended to enhance the toughness and nucleating agent was added to improve the crystallization. Cyclodextrin (CD), considered as a green compound, as well as calcium carbonate (CaCO3) and talc were used as nucleating agents. Effects of these nucleating agents on crystallization, mechanical properties and morphology of neat PLA and PLA/NR blend were investigated. It was found that the addition of talc and CD decreased cold crystallization temperature (Tcc) of the PLA. Same result was obtained in PLA/NR blend containing talc. All nucleating agents increased the degree of crystallinity (ΧC) of PLA, whereas only talc and CaCO3 increased ΧC of PLA in PLA/NR blends. The enhanced toughness of PLA by the addition of nucleating agent was attributed to its increased crystallinity, as well as decreased spherulite size. For PLA/NR blends, the increase in toughness was mainly contributed by the presence of the rubber.  相似文献   

20.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号