首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mortality of animals on roads is a critical threat to many wildlife populations and is poised to increase strongly because of ongoing and planned road construction. If these new roads cannot be avoided, effective mitigation measures will be necessary to stop biodiversity decline. Fencing along roads effectively reduces roadkill and is often used in combination with wildlife passages. Because fencing the entire road is not always possible due to financial constraints, high-frequency roadkill areas are often identified to inform the placement of fencing. We devised an adaptive fence-implementation plan to prioritize road sections for fencing. In this framework, areas along roads of high, moderate, and low levels of animal mortality (respectively, roadkill hotspots, warmspots, and coldspots) are identified at multiple scales (i.e., in circles of different diameters [200–2000 m] in which mortality frequency is measured). Fence deployment is based on the relationship between the amount of fencing being added to the road, starting with the strongest roadkill hotspots, and potential reduction in road mortality (displayed in mortality-reduction graphs). We applied our approach to empirical and simulated spatial patterns of wildlife–vehicle collisions. The scale used for analysis affected the number and spatial extent of roadkill hot-, warm-, and coldspots. At fine scales (e.g., 200 m), more hotspots were identified than at coarse scales (e.g., 2000 m), but combined the fine-scale hotspots covered less road and less fencing was needed to reduce road mortality. However, many short fences may be less effective in practice due to a fence-end effect (i.e., animals moving around the fence more easily), resulting in a trade-off between few long and many short fences, which we call the FLOMS (few-long-or-many-short) fences trade-off. Thresholds in the mortality-reduction graphs occurred for some roadkill patterns, but not for others. Thresholds may be useful to consider when determining road-mitigation targets. The existence of thresholds at multiple scales and the FLOMS trade-off have important implications for biodiversity conservation.  相似文献   

2.
Permeability of Roads to Movement of Scrubland Lizards and Small Mammals   总被引:2,自引:0,他引:2  
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.  相似文献   

3.
Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life‐history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long‐term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under‐road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under‐road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines. Efectos de la Mortalidad en Carreteras y Medidas de Mitigación en Poblaciones de Anfibios Beebee  相似文献   

4.
Ungulate Traffic Collisions in Europe   总被引:7,自引:0,他引:7  
The expansion of highways and roads can fragment natural habitats and thus decrease the viability of ungulate subpopulations. It can also increase the number of vehicle collisions with wildlife. Although collisions apparently contribute to only a minor part of the annual mortality for most ungulate populations, they have become a serious road-safety problem in Europe, the United States, and Japan. To better understand this threat to biodiversity and road safety, we reviewed European and, secondarily, North-American and Japanese literature on ungulate traffic collisions. In contrast to the results of some long-term studies, we argue that the relationship suggested between the number of road kills and traffic volume is confounded by population dynamics, changes in traffic volume, and sampling intensity. Although sexes may run distinct seasonal risks of collision, the age and sex composition of road kills reflect population structure in the field. We also argue that observed seasonal and daily patterns in the number of road kills, related to life-history features of the species involved, should form the template for solutions to the problem. We found no strong evidence of the effects of permanent warning signs, 90° light mirrors, scent, or acoustic fencing on the number of kills per crossing. To reduce the risk of ungulate traffic collisions, we recommend a combination of fencing and wildlife passages for roads and railroads that combine high traffic volume with high speed. For secondary roads we recommend seasonal application of intermittently lighted warning signs, triggered if possible by the ungulates. We emphasize the need for educational programs.  相似文献   

5.
In much of the world, the persistence of long‐distance migrations by mammals is threatened by development. Even where human population density is relatively low, there are roads, fencing, and energy development that present barriers to animal movement. If we are to conserve species that rely on long‐distance migration, then it is critical that we identify existing migration impediments. To delineate stopover sites associated with anthropogenic development, we applied Brownian bridge movement models to high‐frequency locations of pronghorn (Antilocapra americana) in the Greater Yellowstone Ecosystem. We then used resource utilization functions to assess the threats to long‐distance migration of pronghorn that were due to fences and highways. Migrating pronghorn avoided dense developments of natural gas fields. Highways with relatively high volumes of traffic and woven‐wire sheep fence acted as complete barriers. At crossings with known migration bottlenecks, use of high?quality forage and shrub habitat by pronghorn as they approached the highway was lower than expected based on availability of those resources. In contrast, pronghorn consistently utilized high?quality forage close to the highway at crossings with no known migration bottlenecks. Our findings demonstrate the importance of minimizing development in migration corridors in the future and of mitigating existing pressure on migratory animals by removing barriers, reducing the development footprint, or installing crossing structures. Identificación de los Impedimentos para las Migraciones de Larga Distancia de Mamíferos  相似文献   

6.
Effect of Road Traffic on Two Amphibian Species of Differing Vagility   总被引:12,自引:0,他引:12  
Abstract: Vehicular traffic can be a major source of mortality for some species. Highly vagile organisms may be at a disadvantage in landscapes with roads because they are more likely to encounter roads and incur traffic mortality. To test this prediction, we assessed the population abundance of two anuran species of differing vagility, the leopard frog (    Rana pipiens , more vagile) and the green frog (    Rana clamitans , less vagile), at 30 breeding ponds. Traffic density, an index of the amount of potential traffic mortality, was measured in concentric circles radiating from the ponds out to 5 km. We conducted multiple linear regressions relating population abundance to traffic density, pond variables, and landscape habitat variables and found that leopard frog population density was negatively affected by traffic density within a radius of 1.5 km. There was no evidence that the presence of vehicular traffic affected green frog populations. These results suggest that traffic mortality can cause population declines and that more vagile species may be more vulnerable to road mortality than less vagile species.  相似文献   

7.
Abstract: One potential contributor to the worldwide decline of bird populations is the increasing prevalence of roads, which have several negative effects on birds and other vertebrates. We synthesized the results of studies and reviews that explore the effects of roads on birds with an emphasis on paved roads. The well‐known direct effects of roads on birds include habitat loss and fragmentation, vehicle‐caused mortality, pollution, and poisoning. Nevertheless, indirect effects may exert a greater influence on bird populations. These effects include noise, artificial light, barriers to movement, and edges associated with roads. Moreover, indirect and direct effects may act synergistically to cause decreases in population density and species richness. Of the many effects of roads, it appears that road mortality and traffic noise may have the most substantial effects on birds relative to other effects and taxonomic groups. Potential measures for mitigating the detrimental effects of roads include noise‐reduction strategies and changes to roadway lighting and vegetation and traffic flow. Road networks and traffic volumes are projected to increase in many countries around the world. Increasing habitat loss and fragmentation and predicted species distribution shifts due to climate change are likely to compound the overall effects of roads on birds.  相似文献   

8.
Abstract: Although amphibians have relatively high rates of road mortality in urban areas, the conditions under which traffic threatens the survival of local amphibian populations remain unclear. In the Sandhills region of North Carolina (U.S.A.), we counted living and dead amphibians along two transects (total length 165 km) established on roads in areas with varying degrees of urbanization. We found 2665 individuals of 15 species, and amphibian encounter rates declined sharply as traffic and urban development increased. Regression‐tree models indicated that 35 amphibians/100 km occurred on roads with <535 vehicles/day, whereas the encounter rate decreased to only 2 amphibians/100 km on roads with >2048 vehicles/day. Although mortality rate peaked at higher traffic levels (47% dead on roads with >5200 vehicles/day), the number of dead amphibians was highest at low levels of traffic. This suggests that areas where amphibian mortality is concentrated may actually contain the largest populations remaining on a given road transect.  相似文献   

9.
Conservation fences are an increasingly common management action, particularly for species threatened by invasive predators. However, unlike many conservation actions, fence networks are expanding in an unsystematic manner, generally as a reaction to local funding opportunities or threats. We conducted a gap analysis of Australia's large predator‐exclusion fence network by examining translocation of Australian mammals relative to their extinction risk. To address gaps identified in species representation, we devised a systematic prioritization method for expanding the conservation fence network that explicitly incorporated population viability analysis and minimized expected species’ extinctions. The approach was applied to New South Wales, Australia, where the state government intends to expand the existing conservation fence network. Existing protection of species in fenced areas was highly uneven; 67% of predator‐sensitive species were unrepresented in the fence network. Our systematic prioritization yielded substantial efficiencies in that it reduced expected number of species extinctions up to 17 times more effectively than ad hoc approaches. The outcome illustrates the importance of governance in coordinating management action when multiple projects have similar objectives and rely on systematic methods rather than expanding networks opportunistically.  相似文献   

10.
Increasing habitat fragmentation and human population growth in Africa has resulted in an escalation in human–elephant conflict between small‐scale farmers and free‐ranging African elephants (Loxodonta Africana). In 2012 Kenya Wildlife Service (KWS) implemented the national 10‐year Conservation and Management Strategy for the Elephant in Kenya, which includes an action aimed at testing whether beehive fences can be used to mitigate human–elephant conflict. From 2012 to 2015, we field‐tested the efficacy of beehive fences to protect 10 0.4‐ha farms next to Tsavo East National Park from elephants. We hung a series of beehives every 10 m around the boundary of each farm plot. The hives were linked with strong wire. After an initial pilot test with 2 farms, the remaining 8 of 10 beehive fences also contained 2‐dimensional dummy hives between real beehives to help reduce the cost of the fence. Each trial plot had a neighboring control plot of the same size within the same farm. Of the 131 beehives deployed 88% were occupied at least once during the 3.5‐year trial. Two hundred and fifty‐three elephants, predominantly 20–45 years old entered the community farming area, typically during the crop‐ ripening season. Eighty percent of the elephants that approached the trial farms were kept out of the areas protected by the beehive fences, and elephants that broke a fence were in smaller than average groups. Beehive fences not only kept large groups of elephants from invading the farmland plots but the farmers also benefited socially and financially from the sale of 228 kg of elephant‐friendly honey. As news of the success of the trial spread, a further 12 farmers requested to join the project, bringing the number of beehive fence protected farms to 22 and beehives to 297. This demonstrates positive adoption of beehive fences as a community mitigation tool. Understanding the response of elephants to the beehive fences, the seasonality of crop raiding and fence breaking, and the willingness of the community to engage with the mitigation method will help contribute to future management strategies for this high human–elephant conflict hotspot and other similar areas in Kenya.  相似文献   

11.
Roads,Interrupted Dispersal,and Genetic Diversity in Timber Rattlesnakes   总被引:1,自引:0,他引:1  
Abstract: Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine‐scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic‐assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.  相似文献   

12.
Abstract:  Barriers are used to achieve diverse objectives in conservation and biosecurity. In conservation management, fences are often erected to exclude introduced predators and to contain diseased animals or invasive species. Planning an efficient conservation fence involves a number of decisions, including the size and design of the enclosure. We formulated the first general framework for building a fence that minimizes long-term management costs by balancing the expense of constructing a more secure barrier against the costs of coping with more frequent failures. The approach systematically considers the range of potential solutions to a well-defined fencing problem and results in a solution that maximizes conservation return on investment. We illustrated this method by designing efficient fences to address two different conservation goals: exclusion of invasive predators from populations of threatened eastern barred bandicoots ( Perameles gunnii ) and maintenance of isolated populations of healthy Tasmanian devils ( Sarcophilus harrisii ). A systematic approach to conservation fencing allows the best fence design to be chosen quantitatively and defensibly. It also facilitates conservation decisions at a strategic level by allowing fencing to be compared transparently with alternative conservation management actions.  相似文献   

13.
The Ecological Road-Effect Zone of a Massachusetts (U.S.A.) Suburban Highway   总被引:12,自引:0,他引:12  
Abstract: Ecological flows and biological diversity trace broad patterns across the landscape, whereas transportation planning for human mobility traditionally focuses on a narrow strip close to a road or highway. To help close this gap we examined the "road-effect zone" over which significant ecological effects extend outward from a road. Nine ecological factors—involving wetlands, streams, road salt, exotic plants, moose, deer, amphibians, forest birds, and grassland birds—were measured or estimated near 25 km of a busy four-lane highway west of Boston, Massachusetts. The effects of all factors extended > 100 m from the road, and moose corridors, road avoidance by grassland birds, and perhaps road salt in a shallow reservoir extended outwards > 1 km. Most factors had effects at 2–5 specific locations, whereas traffic noise apparently exerted effects along most of the road length. Creating a map of these effects indicates that the road-effect zone averages approximately 600 m in width and is asymmetric, with convoluted boundaries and a few long fingers. We conclude that busy roads and nature reserves should be well separated, and that future transportation systems across landscapes can provide for ecological flows and biological diversity in addition to safe and efficient human mobility.  相似文献   

14.
北京市城区主要交通干线的噪声测量与分析   总被引:10,自引:0,他引:10  
通过对北京市城区二环路、三环路和长安街等交通主干道的昼间交通噪声监测分析 ,发现各干道交通负荷重 ,且噪声普遍超标。城市各部分发展的不平衡导致车流量、车型、路况的差异 ,也使得交通噪声在空间上差异明显。当车流量较大时 ,道路两侧交通噪声在时间上基本呈正态分布。  相似文献   

15.
Abstract:  Verticordia fimbrilepis (Turcz) ssp. fimbrilepis (Myrtaceae) is an endangered shrub that occurs in a number of populations varying in size and landscape context. We compared the importance of factors associated with its reproductive biology with that of factors influencing the regeneration niche in survival of small, isolated populations in contrasting habitat fragments. Small populations on road verges had equal or greater diversity of insect visitors to flowers, rates of pollination, and seed production compared with larger populations in conservation reserves. V. fimbrilepis seeds remained dormant in the soil for at least 30 months, and germination was stimulated by smoke. Plants were killed by fire, but mass recruitment from soil-stored seed reserves occurred in the first and second winters following fire. Our studies showed some seedling recruitment between fires, but this was strongly related to the availability of competition-free establishment sites. Whether this is enough to replace older plants as they die and thereby sustain stable populations is unknown and probably varies with the landscape. Environmental variation between fire episodes influenced population size. Drought increased mortality, but wetter years encouraged interfire recruitment. Most populations are declining and cannot recover without the occurrence of fire. In a fragmented agricultural landscape, fire suppression is the primary management practice. This may adversely affect rare species such as V. fimbrilepis and others with similar life histories that rely on a particular fire regime to persist. Population persistence is more likely to be related to stochastic environmental events than to factors associated with reproductive biology.  相似文献   

16.
Understanding mechanisms influencing the movement paths of animals is essential for comprehending behavior and accurately predicting use of travel corridors. In Yellowstone National Park (USA), the effects of roads and winter road grooming on bison (Bison bison) travel routes and spatial dynamics have been debated for more than a decade. However, no rigorous studies have been conducted on bison spatial movement patterns. We collected 121 380 locations from 14 female bison with GPS collars in central Yellowstone to examine how topography, habitat type, roads, and elevation affected the probability of bison travel year-round. We also conducted daily winter bison road use surveys (2003-2005) to quantify how topography and habitat type influenced spatial variability in the amount of bison road travel. Using model comparison techniques, we found the probability of bison travel and spatial distribution of travel locations were affected by multiple topographic and habitat type attributes including slope, landscape roughness, habitat type, elevation, and distances to streams, foraging areas, forested habitats, and roads. Streams were the most influential natural landscape feature affecting bison travel, and results suggest the bison travel network throughout central Yellowstone is spatially defined largely by the presence of streams that connect foraging areas. Also, the probability of bison travel was higher in regions of variable topography that constrain movements, such as in canyons. Pronounced travel corridors existed both in close association with roads and distant from any roads, and results indicate that roads may facilitate bison travel in certain areas. However, our findings suggest that many road segments used as travel corridors are overlaid upon natural travel pathways because road segments receiving high amounts of bison travel had similar landscape features as natural travel corridors. We suggest that most spatial patterns in bison road travel are a manifestation of general spatial travel trends. Our research offers novel insights into bison spatial dynamics and provides conceptual and analytical frameworks for examining movement patterns of other species.  相似文献   

17.
Abstract:  The impacts of potential linear barriers such as roads, highways, and power lines on rainforest fauna are poorly understood. In the central Brazilian Amazon, we compared the frequency of local movements (≤300 m long) of understory birds within intact forest and across a 30- to 40-m-wide road over a 2-year period. Rainforest had regenerated along some road verges, to the extent that a nearly complete canopy was formed in some areas, so we also assessed whether this facilitated bird movement. Movement data were determined from 1212 recaptures of 3681 netted birds at six study sites. The road significantly inhibited total bird movement across roads at five of the six sites. Bird foraging guilds varied in their responses to the road and different ages of regrowth. Movements of frugivorous and edge and gap species were not inhibited at any site, whereas most forest-dependent insectivores (mixed-species flocks, terrestrial species, and army-ant followers) had markedly inhibited road-crossing movements, except at sites with extensive regrowth. Solitary understory species were especially vulnerable, rarely crossing even roads overgrown by tall regrowth. For sensitive species, road-crossing movements were inhibited because individuals tended to avoid both edge-affected habitat near the road and the road clearing itself. Our results suggest that even narrow roads with low traffic volumes can reduce local movements of many insectivorous birds in Amazonia.  相似文献   

18.
Abstract: We examined the demographic consequences of road mortality in the cooperatively breeding Florida Scrub-Jay (Aphelocoma coerulescens ), a threatened species restricted to the oak scrub of peninsular Florida. Between May 1986 and July 1995 we monitored the survival and reproductive success of a color-banded population of jays along a two-lane highway at Archbold Biological Station. Annual mortality of breeding adults was 0.38 on road territories, significantly higher than the rate of 0.23 for breeders on nonroad territories. High mortality on road territories appeared to be a direct result of automobile traffic per se and not a consequence of road-induced changes in habitat characteristics. Mortality was especially high for immigrants without previous experience living along the road: in their first two years as breeders on road territories, naive immigrants experienced annual mortality of 0.50 and 0.45. From year 3 onward, however, annual mortality dropped to 0.29, not significantly different from the rate for birds on nonroad territories. This experience-dependent decline in road mortality could be caused either by surviving jays learning to avoid automobiles or by selective mortality operating through time (demographic heterogeneity). Proximity to the road had no effect on nesting success beyond its indirect effects on breeder experience and group size. Because the mortality of 30- to 90-day-old fledglings was significantly higher on road territories than on nonroad territories, however, breeder mortality greatly exceeded production of yearlings on road territories. Roadside territories therefore are sinks that can maintain populations of Florida Scrub-Jays only via immigration. Because Florida Scrub-Jays do not avoid roadside habitats and may even be attracted to them, road mortality presents a difficult challenge for the management and conservation of this threatened and declining species.  相似文献   

19.
Moose-vehicle collisions are a frequent traffic-safety issue, particularly in northern regions where moose are attracted to the near-road areas because they can consume sodium from de-icing salts that accumulate in pools at snowmelt. Moose that find salt pools near roads tend to remember their location and to re-visit them to get the sodium they need in their diet. This study investigated the trade-off between road avoidance and salt pool spatial memory in the movement behaviour of moose using an agent-based model to determine how the interplay of these two factors influences the frequency of road crossings in the Laurentides Wildlife Reserve (Québec, Canada). Mitigation measures studied were the removal of roadside salt pools and the construction of compensatory salt pools away from the road shoulder. A GPS telemetry program of moose in the study area was used to validate our model. The model moose with both road avoidance and salt pool spatial memory activated produced the best results when comparing to the real moose data. Results show that both road avoidance and salt pool spatial memory significantly affect moose road crossings, but that road avoidance explains most of the variance. Road avoidance tended to decrease the number of moose crossings, but this decrease was partly compensated by the spatial memory of salt pools which typically increased the likelihood that moose will cross the road. The trade-off between road avoidance and salt pool memory was largest when original salt pools were maintained. In simulations where road avoidance and salt pool memory were both turned off, the impact of mitigation measures on the number of road crossings was lowest. For the most realistic moose behavior, the management scenarios resulted in reductions in road crossings between 22% and 79%, and the best scenario is to completely remove roadside salt pools. If compensation salt pools are used, they should be located as far as possible from the roads (beyond 500 m) to have an impact on moose road crossings.  相似文献   

20.
Spillover effects are an expansion of conservation benefits beyond protected areas through dispersal of species that reside within. They have been well documented in marine but not terrestrial systems. To understand the effects on wildlife created by conservation fences, we explored the internal and external gradients of activity in mammal, reptile, and bird species at a conservation reserve in arid Australia that is fenced to exclude invasive rabbits (Oryctolagus cuniculus), cats (Felis catus), and foxes (Vulpes vulpes). Two methods were used: counts of animal tracks along transects on sand dunes and captures at pitfall-trapping sites. In both cases, sites were spaced at different distances from the reserve fenceline inside and outside the reserve. We recorded a range of spillover, source-sink, step, and barrier effects that combined to create a zone within and around the reserve with fence-induced species-specific wildlife gradients. Two endemic rodents but none of the 4 mammal species reintroduced to the reserve showed positive spillover effects. Barrier effects, where activity was highest close to the fence, were recorded for the feral cat and native bettong (Bettongia lesueur), species that could not breach the fence. In comparison, some reptiles and native mammal species that could permeate the fence displayed source-sink effects; that is, their activity levels were reduced close to the fence likely due to constant emigration to the side with lower density. Activity of some reptiles was lowest at sites inside the reserve and gradually increased at outside sites with distance from the fence, a gradient likely related to trophic cascades triggered by predator exclusion. Our result shows that fenced reserves can create overlapping layers of species-specific gradients related to each species’ ability to permeate the fence and its varying susceptibility to threats. Managers should be aware that these gradients may extend for several kilometers either side of the fence and that not all contained species will increase in abundance. Creating wider conservation benefits may require increased fence permeability and threat reduction outside the fence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号