首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
洱海流域水文特征及非点源污染负荷研究   总被引:2,自引:1,他引:1  
洱海是云南省第二大淡水湖泊。位于东经100°50′—100°17′,北纬25°36′—25°58′,大理白族自治州中心地带。多年平均水位1973.5m(海防高程),平均宽6.3Km,长42Km,岸线长115Km,平均水深11.3m,面积246Km容积27.7×10~8m~3;多年平均入湖水量8.20×10~8m~3,出湖水量8.16×10~8m~3,湖岸线发展系数为2.068,湖泊的补给系数为10.43,湖盆  相似文献   

2.
一、基本概念 (一)单元世界单元世界模型由6个区域构成(图1)。平面积为1平方公里,大气厚度为6公里。其中,大气(1)体积为6×10~9m~3;水区(2)占模型面积的70%,平均深度为10m,体积为7×10~6m~3,并假设其全是淡水;陆地(3)面积为3×10~5m~2,  相似文献   

3.
江汉盆地潜江构造潜二段25个韵律岩盐层,具有岩盐厚度分布稳定、夹石率低、水不溶物含量低、品位高等特点,优选出第22韵律岩盐层,采用水平对接井水溶开采。水平段过大,会导致卤井达到寿命报废时,还无法有效溶出岩盐而造成资源浪费;水平段过小,使卤井难以长时间产出高浓度卤水。研究了岩盐溶解速率变化情况,认为水平段长对溶解速率影响较大。主要根据井组控制储量与井组服务年限匹配性来优化水平段长,分析认为水平段长取110~220 m时既避免了井间干扰,又充分发挥了单井采卤效益。  相似文献   

4.
针对靖边上古气藏地质及生产动态特征,对气井动态储量、产能、合理配产及递减规律评价方法、现场适应性进行了分析,优选出适合致密砂岩气井的开发指标评价方法;在此基础上,对靖边气田气井开发指标进行了评价。研究表明,靖边上古生界气藏气井单井平均动态储量为0.23×10~8m~3,平均无阻流量9.72×10~4m~3/d,合理配产1.04×10~4m~3/d,递减规律主要满足衰竭式递减,前3年平均递减率为25.1%。  相似文献   

5.
热电厂热储系统的构建,对于废弃能源存储和废水再利用有重要意义。以吉林省桦甸市热电厂为例,通过对研究区水文地质条件和温度参数概化,利用FEFLOW软件构建桦甸市热电厂地下水-热耦合模型,用实际观测资料进行识别和验正,初步构建热储系统模型。设置不同井间距和抽水量来优化热储模型,研究结果表明:200 m井间距热贯通严重,500 m和1 000 m热贯通影响小;1 500 m~3/d的流量比1 200 m~3/d的流量在提热期温度下降更快,但提热总量显著增加;各方案提热总量对比显示,优化储热方案为井间距离500 m,储热期注水量8 400 m~3/d,热提取期抽水量1 500 m~3/d,冷水抽注水井在储热期和热提取期水量均为1 200 m~3/d,提热总量为2.27×10~(11)J/d。  相似文献   

6.
上海市大气中非甲烷烃行为研究   总被引:4,自引:3,他引:4  
经1993年7月~1994年4月对上海市区大气中非甲烷烃(NMHC)的测定,探讨了上海市大气中NMHC的浓度水平、浓度时间变化、浓度分布等状况。实验结果表明,上海市大气中NMHC的浓度日变化有比较明显的双峰形规律,即8:00~10:00和15:00~17:00各出现一次浓度高峰。上海市区大气中NMHC浓度,春季平均值为1.31×10~(-3)mg/m~3,夏季为2.00×10~(-3)mg/m~3,秋季为1.31×10~(-3)mg/m~3,冬季为1.29×10~(-3)mg/m~3,全年平均值为1.49×10~(-3)mg/m~3。根据对数正态分布检验的结果可以看出,上海市大气中NMHC并非来自单一类型的污染,而是多种类型的总体污染。  相似文献   

7.
生态需水量的正确估算是实现流域水资源科学管理、合理配置的关键前提。本文综合多种方法计算了孔雀河流域天然植被不同保育目标和保护范围下的生态需水量。结果表明:若要保护流域内的所有天然植被,每年需要最低生态需水量为4.10×10~8m~3,其中林地需水0.4×10~8m~3,草地需水3.7×10~8m~3;若仅保护重点保护区内的天然植被,则每年需生态需水量为1.91×10~8m~3,其中林地需水量0.37×10~8m~3,草地需水量1.54×10~8m~3;若实施生态输水抢救工程,以保护"抢救"保护范围的天然植被,则每年需生态输水量为1.32×10~8m~3,其中良好林地需水0.18×10~8m~3,良好草地需水1.14×10~8m~3。  相似文献   

8.
为了分析泾惠渠灌区地下水储存量消耗情况,探讨GIS在地下水动态研究中的作用,通过1978年和2014年地下水动态观测资料,利用GIS空间分析工具和地下水储存量分析模型对灌区浅层地下水储存量进行计算,对不同时期地下水流场空间分布特征进行可视化展示和统计分析。结果表明:1978年,泾惠渠灌区浅层地下水平均水位为390.35 m,至2014年,浅层地下水平均水位为382.00 m,最低水位下降了7.90 m,最高水位下降了16.08 m,平均水位下降了8.35 m;1978—2014年,灌区潜水储存量减少了8.27×10~8 m~3,年均减少0.23×10~8 m~3。灌区西南部形成了经"燕王—崇皇—张卜—北田"等地,长约45 km、平均宽度约10 km的大型疏干区域,局部储存量约减少了5.60×10~8 m~3,占整个灌区减少量的67.69%。GIS能较好地应用于地下水储存量计算、空间分布特征获取、信息可视化和统计分析。  相似文献   

9.
考虑南方季节性河流年内径流分布严重不均的问题,依据1951—2015年长江荆南三口5站实测原型年径流量序列,采用Mann-Kendall等方法检测其径流序列的突变年份,通过GEV概率密度最大流量、汛期最小输沙量等方法分别计算了荆南三口河道内生态需水量、输沙需水量和水质净化需水量。结果表明:(1)水文序列的突变年份判别为1970年,由此将水文序列划分为变异前(1951—1970年)和变异后(1971—2015年)两段。(2)水文变异前,河道内年生态需水量、输沙需水量和水质净化需水量分别为1239.27×10~8m~3、910.01×10~8m~3、425.70×10~8m~3;水文变异后,河道内年生态需水量、输沙需水量和水质净化需水量分别为563.32×10~8m~3、501.13×10~8m~3、111.54×10~8m~3。(3)在季节上,为保障季节性河流河道内全年均满足生态流量,1、2、3、4、11、12月份应满足的生态需水量为1647.28m~3/s,5—10月份应满足的生态需水量分别为873.87m~3/s、2499.59m~3/s、5812.76m~3/s、4346.89m~3/s、3901.18m~3/s、1721.70m~3/s。(4)从综合角度考虑,水文变异下长江荆南三口季节性河流河道内年生态需水量为752.71×10~8m~3,年输沙需水量为910.01×10~8m~3,年水质净化需水量为425.70×10~8m~3。  相似文献   

10.
为了解决冲积平原区枯水季节水资源的不足,需要在对研究区开展综合水文地质勘查的基础上,针对地下截潜自流引水工程方案的可行性进行系列问题的论证。本文以广阔渠截潜自流引水工程为例,在查明和分析研究区地质环境条件的基础上,对研究区枯水期地下水资源量进行了评价,即分别采用不同方法对研究区枯水期地下水资源的储存量、补给量和可供自流开发利用的地下水径流量进行了计算,并对截潜自流引水工程运行过程中可能产生的环境地质问题进行了预测评估。结果表明:研究区枯水期地下水储存资源较丰富,但补给量和可供自流开发利用的地下水径流量较小,分别为0.527m3/s和0.449m3/s,远不能满足规划用水1.0~1.5m3/s的要求,说明在本区采用截潜自流引水方案是不适宜的,并建议采用直接导引储存汝河汛期水的方案。  相似文献   

11.
部分城市空气中颗粒物的元素组成比较   总被引:7,自引:0,他引:7  
通过对数浓度图和分歧系数对中国广义、武汉、兰州和重庆4座城市空气中粗细颗粒物的42种元素组成进行了比较。结果表明,与人类活动有关的污染元素主要富集在细颗粒物中,而粗颗粒物中元素相对于细颗粒物来说更多的来自于土壤;同一座城市内城区同郊区相比,元素污染更严重,城郊之间细颗粒物中元素在短距离和有利地形下传输作用十分明显。同时还比较了城市之间的元素污染程度。结果表明,兰州城区相对于其它采校点位颗粒物中元素污染较为  相似文献   

12.
血铅生物半衰期较短,只能反应人体短近铅中毒状况,存在一定局限性;骨铅生物半衰期较长,能够反应人体铅负荷的累积效应,有必要进行检测。体内X射线荧光骨铅检测系统从发明至今已有30多年的历史,文章根据激发源的不同将其分为三类系统进行分析讨论,作为国内开展相关研究工作的借鉴。  相似文献   

13.
王伟 《环境科学与管理》2013,(1):131-133,156
通过对鞍山市典型区域(6个污染源、4个居住区、一个对照点)大气中总悬浮颗粒物(TSP)的监测,采用GC/MS法分析了总悬浮颗粒物中16种PAHs的含量,探讨了鞍山市总悬浮颗粒物浓度及16种多环芳烃的分布特征及来源。研究结果表明,鞍山市大气中总悬浮颗粒物采暖期普遍比非采暖期高1.1~2.5倍,总悬浮颗粒物中PAHs总量采暖期也远远高于非采暖期;鞍钢6个点位在非采暖期的PAHs总量均远远高于其他五个点位,表明了工业污染导致的环境空气质量下降是不容忽视的。  相似文献   

14.
合理评定测量结果的不确定度是分析实验室必须重视的问题。通过酸性高锰酸钾氧化法测定水中高锰酸盐指数的实例,确立高锰酸盐指数测量的不确定度数学模型。讨论了高锰酸盐指数测定值不确定度的各种因素,对各不确定度分量进行分析和量化,求得其扩展不确定度。结果表明,影响其测量不确定度的主要因素是测量熏复性。在高锰酸盐指数值为4.17 mg/L的水样测定中,扩展不确定度为0.08 mg/L。  相似文献   

15.
五大连池冬季水体中磷的分布特征   总被引:1,自引:0,他引:1  
在冬季对东北地区五大连池各池采取表层水样,对水体中总磷、溶解性总磷和溶解性磷酸盐进行了分析。结果表明五大连池冬季水体中总磷浓度在0.035 mg/L~0.144 mg/L之间,其中四池含量最高,二池含量最低。溶解性总磷的含量在0.027 mg/L~0.049 mg/L之间,三池含量最高,一池含量最低。溶解性磷酸盐的浓度在0.020 mg/L~0.042 mg/L之间,三池含量最高,二池含量最低。水体中磷以溶解态的形式存在为主,而溶解态中又以溶解性磷酸盐为主,占溶解性总磷的平均百分比为80.92%。总的来说三池、四池和五池磷水平较高,人类污染影响严重。  相似文献   

16.
为研究我国典型城市冬季龙头水中卤代酚类嗅味暴露特征,以8种典型卤代酚类嗅味物质为研究对象,采用固相微萃取预处理,结合气相色谱-质谱联用仪对全国22个典型城市龙头水中的卤代酚类嗅味污染物进行定性、定量分析. 结果表明:在我国冬季典型城市龙头水中普遍存在卤代酚类嗅味物质暴露问题. 其中,以4-氯酚的暴露浓度最大,ρ(4-氯酚)最高为3 526.24 ng/L,ρ(2-氯酚)和ρ(2-溴酚)较小,最大暴露值均小于100 ng/L;ρ(2,6-二溴酚)与ρ(2,6-二氯酚)在各典型城市普遍出现超嗅阈值现象;就调查的城市而言,东北地区污染最为严重,其次为华北地区,中南和西部地区嗅味物质污染及超嗅阈值现象相对较轻.   相似文献   

17.
太湖北部沉积物不同形态磷提取液中有机质的特征   总被引:4,自引:2,他引:2  
综合应用高效体积排阻色谱、三维荧光光谱、红外光谱及元素分析等方法,研究了太湖北部3个湖区表层(0~10 cm)沉积物不同形态磷提取液中有机质的特征,并探讨了有机质与磷之间的关系.结果发现,沉积物中总磷的含量与其上覆水体的营养水平相一致;有机C/N、C/P比值在8.5~11.9和188.5~256.6之间,表明沉积物中有机质以湖泊内源自生为主,受陆源输入的影响很小.不同磷形态提取液中有机质的相对分子质量分布和三维荧光光谱存在很大差异,但不同沉积物之间的差别并不显著.3种提取液中有机质的相对分子质量顺序依次为:HCl>NaOH>NaHCO3,其重均相对分子质量(Mw)和数均相对分子质量(Mn)分别在4 983~5 873和3 642~5 065、 3 628~4 198和2 334~2 616、 3 282~3 512和2 249~2 380之间,可能反映了不同提取液中有机磷的组成及其生物活性的不同.沉积物提取液中有机质的三维荧光光谱均以类富里酸荧光峰A(Ex/Em=230~260 nm/360~470 nm)或C(Ex/Em=290~320 nm/390~460 nm)为主,NaHCO3和HCl提取液中还分别发现了类蛋白荧光峰B(Ex/Em=275~280 nm/340~360 nm)和D(Ex/Em=225 nm/330~350 nm)及类腐殖酸荧光峰E(Ex/Em=360~375 nm/460~470 nm).这些荧光光谱特征不仅揭示了不同提取液中有机质组成的差异,而且可能表明了太湖沉积物中有机质的降解受到再悬浮作用的强烈影响.此外,沉积物胡敏酸红外光谱中1 059~1 082 cm-1的吸收谱带也可能反映了磷酸盐的存在.  相似文献   

18.
19.
土壤中苯酚迁移转化的研究进展   总被引:1,自引:0,他引:1  
近年来,由于污水灌溉和运输事故等原因造成土壤苯酚污染的事件多有发生,处理土壤苯酚污染已成为目前亟待解决的环境问题.本文根据土壤中苯酚的水运移,土壤颗粒对苯酚的吸附、土壤微生物对苯酚的降解、植物的吸收、苯酚的挥发等特性以及各种治理方法,提出土壤中苯酚污染的净化与修复措施.  相似文献   

20.
随着人们在日常生活中使用药品和个人护理品(PPCPs)的增加,导致水环境中PPCPs污染日趋严重,这对人类健康和生态环境构成巨大威胁.光催化技术具有效率高、寿命长、维护简单和运行能耗低等优点,在处理PPCPs污染方面已经显示出巨大潜力.文章主要从光催化半导体材料的物理性质上分为金属半导体材料和非金属半导体材料两类进行综...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号