首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m-3 (4 pCi L-1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m-3) from the highly permeable soils (geometric mean permeability of 5 x 10(-11) m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h-1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.  相似文献   

2.
More than 300 air change rate experiments were completed in two occupied residences: a two-story detached house in Redwood City, CA, and a three-story townhouse in Reston, VA. A continuous monitor was used to measure the decay of SF6 tracer gas over periods of 1-18 hr. Each experiment first included a measurement of the air change rate with all exterior doors and windows closed (State 0), then a measurement with the single change from State 0 conditions of opening one or more windows. The overall average State 0 air change rate was 0.37 air changes per hour (hr(-1)) (SD = 0.10 hr(-1); n = 112) for the California house and 0.41 hr(-1) (SD = 0.19 hr(-1); n = 203) for the Virginia house. Indoor/outdoor temperature differences appeared to be responsible for the variation at the Virginia house of 0.15-0.85 hr(-1) when windows were closed. Opening a single window increased the State 0 air change rate by an amount roughly proportional to the width of the opening, reaching increments as high as 0.80 hr(-1) in the California house and 1.3 hr(-1) in the Virginia house. Multiple window openings increased the air change rate by amounts ranging from 0.10 to 2.8 hr(-1) in the California house and from 0.49 to 1.7 hr(-1) in the Virginia house. Compared with temperature differences and wind effects, opening windows produced the greatest increase in the air change rates measured in both homes. Results of this study indicate the importance of occupant window-opening behavior on a home's air change rate and the consequent need to incorporate this factor when estimating human exposure to indoor air pollutants.  相似文献   

3.
In urban and suburban settings, indoor ozone exposures can represent a significant fraction of an individual's total exposure. The decay rate, one of the factors determining indoor ozone concentrations, is inadequately understood in residences. Decay rates were calculated by introducing outdoor air containing 80-160 parts per billion ozone into 43 residences and monitoring the reduction in indoor concentration as a function of time. The mean decay rate measured in the living rooms of 43 Southern California homes was 2.80 +/- 1.30 hr-1, with an average ozone deposition velocity of 0.049 +/- 0.017 cm/sec. The experimental protocol was evaluated for precision by repeating measurements in one residence on five different days, collecting 44 same-day replicate measurements, and by simultaneous measurements at two locations in six homes. Measured decay rates were significantly correlated with house type and the number of bedrooms. The observed decay rates were higher in multiple-family homes and homes with fewer than three bedrooms. Homes with higher surface-area-to-volume ratios had higher decay rates. The ratio of indoor-to-outdoor ozone concentrations in homes not using air conditioning and open windows was 68 +/- 18%, while the ratio of indoor-to-outdoor ozone was less than 10% for the homes with air conditioning in use.  相似文献   

4.
Ammonia emission rates from livestock buildings are required to construct an accurate emission inventory for the UK. Ventilation and ammonia emission rates from a fattening pig unit and a broiler house, both mechanically ventilated, were estimated using fan wheel anemometers and thermal converters with a chemiluminescence NOx-analyser to measure the ventilation rate and the ammonia concentration, respectively. The estimated ammonia emission factors were 46.9 and 16.6 kg lu-1 a-1 for the fattening pig unit and the broiler house, respectively. Both emission factors were within the range reported in the literature. A tracer gas (CO) method, based on a constant tracer release rate, was validated for measuring ventilation rates from naturally ventilated livestock buildings. Air inlets and outlets were identified using the air temperature or tracer concentration in the opening. Tracer concentration was found to be a more suitable criterion than temperature. In both houses, a significant correlation between the estimated ventilation rate using the tracer method and the measured ventilation rate using fan wheel anemometers was found. The ventilation rate was underestimated by 12 and 6% for the piggery and broiler house, respectively. The instantaneous ammonia emission derived from the tracer gas method was lower than the ammonia emission derived from the fan wheel anemometer method by 14 and 16% for the piggery and broiler house, respectively. The ventilation and ammonia emission estimates using the tracer method were within acceptable range from the ventilation and emission rates measured using measuring fans, but because of its accuracy and simplicity the fan wheel anemometer method is preferred for long-term measurements of ventilation rate in mechanically ventilated buildings.  相似文献   

5.
ABSTRACT

In urban and suburban settings, indoor ozone exposures can represent a significant fraction of an individual's total exposure. The decay rate, one of the factors determining indoor ozone concentrations, is inadequately understood in residences. Decay rates were calculated by introducing outdoor air containing 80-160 parts per billion ozone into 43 residences and monitoring the reduction in indoor concentration as a function of time. The mean decay rate measured in the living rooms of 43 Southern California homes was 2.80 + 1.30 hr-1, with an average ozone deposition velocity of 0.049 + 0.017 cm/sec. The experimental protocol was evaluated for precision by repeating measurements in one residence on five different days, collecting 44 same-day replicate measurements, and by simultaneous measurements at two locations in six homes. Measured decay rates were significantly correlated with house type and the number of bedrooms. The observed decay rates were higher in multiple-family homes and homes with fewer than three bedrooms. Homes with higher surface-area-to-volume ratios had higher decay rates. The ratio of indoor-to-outdoor ozone concentrations in homes not using air conditioning and open windows was 68 + 18%, while the ratio of indoor-to-outdoor ozone was less than 10% for the homes with air conditioning in use.  相似文献   

6.
Many energy conservation strategies for residences involve reducing house air exchange rates. Reducing the air exchange rate of a house can cause an increase in pollutant levels if there is an indoor pollution source and if the indoor pollutant source strength remains constant. However, if the indoor pollutant source strength can also be reduced, then it is possible to maintain or even improve indoor air quality. Increasing the insulation level of a house is a means of achieving energy conservation goals and, in addition, can reduce the need for space heating and thereby reduce the pollutant source strengths of combustion space heaters such as unvented kerosene space heaters, unvented gas space heaters, and wood stoves. In this paper, the indoor air quality trade-off between reduced infiltration and increased insulation in residences is investigated for combustion space heaters. Two similar residences were used for the experiment. One residence was used as a control and the other residence had infiltration and insulation levels modified. An unvented propane space heater was used as the source in this study. A model was developed to describe the dependence of both indoor air pollution levels and the appliance source strengths on house air exchange rates and house insulation levels. Model parameters were estimated by applying regression techniques to the data. Results show that indoor air pollution levels in houses with indoor combustion space heating pollution sources can be held constant (or lowered) by reducing the thermal conductance by an amount proportional to (or greater than) the reduction of the air exchange rate.  相似文献   

7.
A compilation of data from earlier studies of 172 homes in the Pacific Northwest indicated that approximately 65 percent of the 46 homes tested in the Spokane River Valley/Rathdrum Prairie region of eastern Washington/northern Idaho had heating season indoor radon (222Rn) concentrations above the U. S. EPA guideline of 148 Bq m?3 (4 pCi L?1). A subset of 35 homes was selected for additional study. The primary source of indoor radon in the Spokane River Valley/Rathdrum Prairie was pressure-driven flow of soil gas containing moderate radon concentrations (geometric mean concentration of 16,000 Bq m?3) from the highly permeable soils (geometric mean permeability of 5 × 10?11 m2) surrounding the house substructures. Estimated soil gas entry rates ranged from 0.4 to 39 m3h?1 and 1 percent to 21 percent of total building air infiltration. Radon from other sources, including domestic water supplies and building materials was negligible. In high radon homes, winter indoor levels averaged 13 times higher than summer concentrations, while in low radon homes winter levels averaged only 2.5 times higher. Short-term variations in indoor radon were observed to be dependent upon indoor-outdoor temperature differences, wind speed, and operation of forced-air furnace fans. Forced-air furnace operation, along with leaky return ducts and plenums, and openings between the substructure and upper floors enhanced mixing of radon-laden substructure air throughout the rest of the building.  相似文献   

8.
As an odorless, nontoxic, and inert compound, sulfur hexafluoride (SF6) is one of the most widely used tracer gases in indoor air quality studies in both controlled and uncontrolled environments. This compound may be subject to reactions with water vapor under elevated temperature to form acidic inorganic compounds such as HF and H2SO4. Thus, in the presence of unvented combustion sources such as kerosene heaters, natural gas heaters, gas log fireplaces, candles, and lamps, the SF6 dissociation may interfere with measurements of the emissions from these sources. Tests were conducted in a research house with a vent-free natural gas heater to investigate these potential interferences. It was observed that the heater operation caused about a 5% reduction of SF6 concentration, which can be an error source for the ventilation rate measurement and consequently the estimated pollutant emission rates. Further analysis indicates that this error can be much greater than the observed 5% under certain test conditions because it is a function of the ventilation flow rate. Reducing the tracer gas concentration has no effect on this error. A simple theoretical model is proposed to estimate the magnitude of this error. The second type of interference comes from the primary and secondary products of the SF6 dissociation, mainly H2SO4, SO2, HF, and fine particulate matter (PM). In the presence of approximately 5 ppm SF6, the total airborne concentrations of these species increased by a factor of 4-10. The tests were performed at relatively high SF6 concentrations, which is necessary to determine the interferences quantitatively. The second type of interference can be significantly reduced if the SF6 concentration is kept at a low ppb level.  相似文献   

9.
Background, Aims and Scope Secondary inorganic aerosol (SIA), i.e. particulate sulphate (S(VI)), ammonium and nitrate (N(V)) is formed from gaseous precursors i.e., sulfur dioxide (S(IV)), ammonia and nitrogen oxides, in polluted air on the time-scale of hours to days. Besides particulate ammonium and nitrate, the respective gaseous species ammonia and nitric acid can be formed, too. SIA contributes significantly to elevated levels of respirable particulate matter in urban areas and in strongly anthropogenically influenced air in general. Methods The near-ground aerosol chemical composition was studied at two stationary sites in the vicinity of Berlin during a field campaign in summer 1998. By means of analysis of the wind field, two episodes were identified which allow to study changes within individual air masses during transport i.e., a Lagrangian type of experiment, with one station being upwind and the other downwind of the city. By reference to a passive tracer (Na+) and estimates on dry depositional losses, the influences of dispersion and mixing on concentration changes can be eliminated from the data analysis. Results and Discussion Chemical changes in N(-III), N(V) and S(VI) species were observed. SIA i.e., N(V) and S(VI), was formed from emissions in the city within a few hours. The significance of emissions in the city was furthermore confirmed by missing SIA formation in the case of transport around the city. For the two episodes, SIA formation rates could be derived, albeit not more precise than by an order of magnitude. N(V) formation rates were between 1.4 and 20 and between 1.9 and 59 % h-1 on the two days, respectively, and S(VI) formation rates were > 17 and > 10 % h-1. The area south of the city was identified as a source of ammonia. Conclusion The probability of occurrence of situations during which the downwind site (50 km downwind of Berlin) would be hit by an urban plume is > 7.4%. Furthermore, for the general case of rural areas in Germany it is estimated that for more than half of these there is a significant probability to be hit by an urban plume (> 8%). The S(VI) formation rates are higher than explainable by homogeneous gas-phase chemistry and suggest the involvement of heterogeneous reactions of aerosol particles. Recommendation and Outlook The possible contribution of heterogeneous processes to S(VI) formation should be addressed in laboratory studies. Measurements at more than two sites could improve the potential of Lagrangian field experiments for the quantification of atmospheric chemical transformations, if a second downwind site is chosen in such a way that, at least under particular stability conditions, measurements there are representative for the source area.  相似文献   

10.
Hourly indoor and outdoor fine particulate matter (PM2.5), organic and elemental carbon (OC and EC, respectively), particle number (PN), ozone (O3), carbon monoxide (CO), and nitrogen oxide (NOx) concentrations were measured at two different retirement communities in the Los Angeles, CA, area as part of the Cardiovascular Health and Air Pollution Study. Site A (group 1 [G1]) was operated from July 6 to August 20, 2005 (phase 1 [P1]) and from October 19 to December 10, 2005 (P2), whereas site B (group 2 [G2]) was operated from August 24 to October 15, 2005 (P1), and from January 4 to February 18, 2006 (P2). Overall, the magnitude of indoor and outdoor measurements was similar, probably because of the major influence of outdoor sources on indoor particle and gas levels. However, G2 showed a substantial increase in indoor OC, PN, and PM2.5 between 6:00 and 9:00 a.m., probably from cooking. The contributions of primary and secondary OC (SOA) to measured outdoor OC were estimated from collected OC and EC concentrations using EC as a tracer of primary combustion-generated OC (i.e., "EC tracer method"). The study average outdoor SOA accounted for 40% of outdoor particulate OC (40-45% in the summer and 32-40% in the winter). Air exchange rates (hr(-1)) and infiltration factors (Finf; dimensionless) at each site were also determined. Estimated Finf and measured particle concentrations were then used in a single compartment mass balance model to assess the contributions of indoor and/or outdoor sources to measured indoor OC, EC, PM2.5, and PN. The average percentage contributions of indoor SOA of outdoor origin to measured indoor OC were approximately 35% (during G1P1 and G1P2) and approximately 45% (for G2P1 and G2P2). On average, 36% (G2P1) to 44% (G1P1) of measured indoor OC was composed of outdoor-generated primary OC.  相似文献   

11.
Abstract

A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-μm particles ranged from 1.5 hr?1 during operation of an in-duct, 5-in. pleated media filter to 7.2 hr?1 for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr?1 when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr?1 under baseline conditions, 0.5 hr?1 during operation of three portable ionic air cleaners, 1 hr?1 for an in-duct 1-in. media filter, 2.4 hr?1 for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr?1 for an in-duct 5-in. media filter, 4.7 hr?1 during operation of five portable HEPA filters, 6.1 hr?1 for a conventional in-duct electronic air cleaner, and 7.5 hr?1 for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.  相似文献   

12.
Investigation of gas production and entrapment in granular iron medium   总被引:1,自引:0,他引:1  
A method for measuring gas entrapment in granular iron (Fe0) was developed and used to estimate the impact of gas production on porosity loss during the treatment of a high NO3- groundwater (up to approximately 10 mM). Over the 400-d study period the trapped gas in laboratory columns was small, with a maximum measured at 1.3% pore volume. Low levels of dissolved H2(g) were measured (up to 0.07+/-0.02 M). Free moving gas bubbles were not observed. Thus, porosity loss, which was determined by tracer tests to be 25-30%, is not accounted for by residual gas trapped in the iron. The removal of aqueous species (i.e., NO3-, Ca, and carbonate alkalinity) indicates that mineral precipitation contributed more significantly to porosity loss than did the trapped gases. Using the stoichiometric reactions between Fe0 and NO3-, an average corrosion rate of 1.7 mmol kg-1 d-1 was derived for the test granular iron. This rate is 10 times greater than Fe0 oxidation by H2O alone, based on H2 gas production. NO3- ion rather than H2O was the major oxidant in the groundwater in the absence of molecular O2. The N-mass balance [e.g., N2g and NH4+ and NO3-] suggests that abiotic reduction of NO3- dominated at the start of Fe0 treatment, whereas N2 production became more important once the microbial activity began. These laboratory results closely predict N2 gas production in a separated large column experiment that was operated for approximately 2 yr in the field, where a maximum of approximately 600 ml d-1 gas volumes was detected, of which 99.5% (v/v) was N2. We conclude that NO3- suppressed the production of H2(g) by competing with water for Fe0 oxidation, especially at the beginning of water treatment when Fe0 is highly reactive. Depends on the groundwater composition, gas venting may be necessary in maintaining PRB performance in the field.  相似文献   

13.
Resuspension experiments were performed in a single-family residence. Resuspension by human activity was found to elevate the mass concentration of indoor particulate matter with an aerodynamic diameter less than 10 microm (PM10) an average of 2.5 times as high as the background level. As summarized from 14 experiments, the average estimated PM10 resuspension rate by a person walking on a carpeted floor was (1.4 +/- 0.6) x 10(-4) hr(-1). The estimated residence time for PM in the indoor air following resuspension was less than 2 hr for PM10 and less than 3 hr for 2-microm tracer particles. However, experimental results show that the 2-microm tracer particles stayed in the combined indoor air and surface compartments much longer (>19 days). Using a two-compartment model to simulate a regular deposition and resuspension cycle by normal human activity (e.g., walking and sitting on furniture), we estimated residence time for 2-microm conservative particulate pollutants to be more than 7 decades without vacuum cleaning, and months if vacuum cleaning was done once per week. This finding supports the observed long residence time of persistent organic pollutants in indoor environments. This study introduces a method to evaluate the particle resuspension rate from semicontinuous concentration data of particulate matter (PM). It reveals that resuspension and subsequent exfiltration does not strongly affect the overall residence time of PM pollutants when compared with surface cleaning. However, resuspension substantially increases PM concentration, and thus increases short-term inhalation exposure to indoor PM pollutants.  相似文献   

14.
This paper describes an experimental study on the suppression of soot by metal additives during the combustion of polystyrene (PS). A two-dimensional flame generated by using a Wolfhard-Parker type diffusion flame burner was used to simulate practical combustion situations. The PS was continuously fed to the burner and, by controlling the feed rate, the combustion was maintained at a steady state. The additives tested were the salts of Li, Na, K, Mg, Ca, Sr, and Ba, and the combinations of the salts of K and Ca, Sr, or Ba. These additives were added to the flame in the form of small drops of their aqueous solutions generated by an ultrasonic atomizer. Since the flow rate of the carrier gas (air) is very small, this addition causes no noticeable disturbance to the flame. The effectiveness of the alkali metals follows the order of their ease of ionization, i.e., K > Na > Li, and that of the alkaline-earth metals: Ba > Sr > Ca > Mg. At low addition rates, the effectiveness increases with increasing addition rate but becomes unaffected at high addition rates and the maximum percentage of soot suppressed is approximately 50 percent. The combinations of the two metals (i.e., K and Ca, Sr, or Ba) are much more effective than each single metal at the same addition rates and the maximum percentage of soot suppressed reaches approximately 90 percent. It is proposed that the alkaline-earth metals catalyze the ionization of the alkali metals, thus significantly enhancing the effect on soot suppression.  相似文献   

15.
Atmospheric tracer techniques were used in 21 tests to determine infiltration rates of roof exhaust gases in downwind potrooms at an aluminum reduction plant during two summer months. During each tracer test SF6 and, in some cases, CBrF3 were released to simulate the exhaust gases, and tracer concentrations were measured along the ventilation doors of downwind rooms. Maximum infiltration rates were less than 5 % of the tracer release rate. The location of the maximum infiltration occurred along the upwind side of the first downwind room in two thirds of the cases and along the downwind edge of the same room where tracer was released in one third of the tests. For rooms further downwind the infiltration rate was less than 1%.  相似文献   

16.
Residential interior door positions influence the pollutant concentrations that result from short-term indoor sources, such as cigarettes, candles, and incense. To elucidate this influence, we reviewed past studies and conducted new experiments in three residences: a single-story 714 m3 ranch-style house, a 510 m3 two-story split-level house, and a 200 m3 two-story house. During the experiments, we released sulfur hexafluoride or carbon monoxide tracer gas over short periods (≤30 min) and measured concentrations in the source room and at least one other (receptor) room for various interior door opening positions. We found that closing a door between rooms effectively prevented transport of air pollutants, reducing the average concentration in the receptor room relative to the source room by 57–100% over exposure periods of 1–8 h. When intervening doors were partially or fully open, the reduction in average concentrations ranged from 3% to 99%, varying as a function of door opening width and the distance between source and receptor rooms.  相似文献   

17.
Though several different models have been developed for sub-surface migration, little attention has been given to the effect of subsurface transport on the indoor environment. Existing methods generally assume that a house is one well-mixed compartment. A two-compartment model was developed to better characterize this exposure pathway; the model treats the house as two well-mixed compartments, one for the basement and one for the remainder of the house. A field study was completed to quantify parameters associated with the two-compartment model, such as soil gas intrusion rates and basement to ground floor air exchange rates. Two residential test houses in Paulsboro, New Jersey were selected for this study. All experiments were completed using sulfur hexafluoride (SF6) as a tracer gas. Soil gas intrusion rates were found to be highly dependent on the soil gas to basement pressure difference, varying from 0.001 m3 m−2 h−1 for a pressure drop of –0.2 Pa to 0.011 m3 m−2 h−1 for a pressure drop of –6.0 Pa. Basement ventilation rates ranged from 0.17 to 0.75 air changes per hour (ACH) for basement to ambient pressure differences ranging from –1.1 to –7.6 Pa (relative to ambient). Application of experimental results in conjunction with the two-compartment model indicate that exposures are highly dependent on gas intrusion rates, basement ventilation rate, and fraction of time spent in the basement. These results can also be significantly different when compared with the simple well-mixed house assumption.  相似文献   

18.
A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements (i.e., As, B, and Se), i.e., emission to ambient air, uptake by surface vegetation, and/or rainfall infiltration, after flue gas desulfurization (FGD) material is applied to soil. Three FGD materials collected from two power plants were used. Our results show Hg released into the air and uptake in grass from all FGD material-treated soils were all higher (P < 0.1) than the amounts observed from untreated soil. Hg in the soil amended with the FGD material collected from a natural oxidation wet scrubber (i.e., SNO) was more readily released to air compared to the other two FGD materials collected from the synthetic gypsum dewatering vacuum belt (i.e., AFO-gypsum) and the waste water treatment plant (i.e., AFO-CPS) of a forced oxidation FGD system. No Hg was detected in the leachates collected during the only 3-hour, 1-inch rainfall event that occurred throughout the 4-week testing period. For every kilogram of FGD material applied to soil, AFO-CPS released the highest amount of Hg, B, and Se, followed by SNO, and AFO gypsum. Based on the same energy production rate, the land application of SNO FGD material from Plant S released higher amounts of Hg and B into ambient air and/or grass than the amounts released when AFO-gypsum from Plant A was used. Using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk. In addition, this study demonstrates that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements from FGD material-amended soils. It also shows, under the same soil amendment conditions, the mobility of trace elements varies when FGD materials produced from different processes are used.  相似文献   

19.
Abstract

Range gas consumption in households tends to follow an annual cycle resembling a sinusoid, with peak consumption during the winter. When outdoor NO2 concentrations have a constant or small impact, the resulting indoor NO2 concentrations also tend to resemble an annual sinusoid. Optimal monitoring strategies can be designed to take advantage of this knowledge to obtain a better estimate of the true annual average gas consumption or indoor NO2 concentration. Gas consumption data, together with measured outdoor concentrations, house volumes, sampled emission rates, air exchange rates, and NO2 decay rates, are used to model weekly indoor NO2 concentrations throughout the year. Based on the modeling results, various monitoring strategies are evaluated for their accuracy in estimating the annual mean. Analysis of the results indicates that greater accuracy is attained using samples equally spaced throughout the year. In addition, the expected error for various monitoring strategies and various numbers of equally spaced samples is quantified, and their ability to classify homes into correct concentration categories is assessed.  相似文献   

20.
The air quality of an urban area depends to a great extent upon the quantity and type of fuel consumed. Thus, a marked change in energy demand from 1960 to 2000 A.D. will affect the air quality of all of our urban centers. Interwoven with this potential effect is the anticipated influence of the change in type and quality of fuels, e.g., nuclear fuels, high sulfur coals, and a major modification in energy derived motive power, i.e., fuel cells, and the subsequent depletion of natural gas as an energy raw material. The current trend is to greater urban population densities, and it is estimated that by the year 2000 A.D., 85 percent of America’s population will live on only 10 percent of the land mass. To assess the potential impact of the energy demands for the next half century on air quality, particularly of America’s urban centers, a review of current practices of combustion of coal, petroleum, and natural gas, and the potential effect on community air quality will be developed. To meet the impact of the interrelated changing patterns of population growth, urban developments, energy requirements and available sources, research needs on both a short and long term basis will be explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号