首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Poultry litter provides a rich nutrient source for crops, but the usual practice of surface-applying litter can degrade water quality by allowing nutrients to be transported from fields in surface runoff while much of the ammonia (NH3)-N escapes into the atmosphere. Our goal was to improve on conventional titter application methods to decrease associated nutrient losses to air and water while increasing soil productivity. We developed and tested a knifing technique to directly apply dry poultry litter beneath the surface of pastures. Results showed that subsurface litter application decreased NH3-N volatilization and nutrient losses in runoff more than 90% (compared with surface-applied litter) to levels statistically as low as those from control (no litter) plots. Given this success, two advanced tractor-drawn prototypes were developed to subsurface apply poultry litter in field research. The two prototypes have been tested in pasture and no-till experiments and are both effective in improving nutrient-use efficiency compared with surface-applied litter, increasing crop yields (possibly by retaining more nitrogen in the soil), and decreasing nutrient losses, often to near background (control plot) levels. A paired-watershed study showed that cumulative phosphorus losses in runoff from continuously grazed perennial pastures were decreased by 55% over a 3-yr period if the annual poultry litter applications were subsurface applied rather than surface broadcast. Results highlight opportunities and challenges for commercial adoption of subsurface poultry litter application in pasture and no-till systems.  相似文献   

2.
Poultry litter is known to be an excellent organic fertilizer, but the common practice of spreading litter on the surface of pastures has raised serious water-quality concerns and may limit potential benefits of litter applications. Because surface-applied litter is completely exposed to the atmosphere, runoff can transport nutrients into nearby streams and lakes, and much of the ammonium nitrogen volatilizes before it can enter the soil. Our previous research showed that a manual knifing technique to apply dry litter under a perennial pasture surface effectively prevented about 90% of nutrient loss with runoff from surface-applied litter, and tended to increase forage yield. However, this technique (known as subsurface banding) cannot become a practical management option for producers until it is mechanized. To begin that process, we tested an experimental single-shank, tractor-drawn implement designed to apply poultry litter in subsurface bands. Our objective was to compare this mechanized subsurface-banding method against conventional surface application to determine effects on nutrient loss with runoff from a perennial grassland treated with dry poultry litter. Early in the growing season, broiler litter was applied (6.7 dry-weight Mg ha−1) to each plot (except three control plots) using one of two application methods: surface broadcast manually or subsurface banded using the tractor-drawn implement. Simulated rainfall (5 cm h−1) generated 20 min of runoff from each plot for volume and analytical measurements. Results showed that subsurface-banded litter increased forage yield while decreasing nutrient (e.g. N and P) loss in runoff by at least 90% compared to surface-broadcast litter.  相似文献   

3.
Surface application of broiler litter to no-till cotton could lead to degradation of water quality. Incorporation of broiler litter into the top surface soil (0.05 m) could alleviate this risk. A 2-yr field study was conducted on a silt loam upland soil to determine the effect of incorporation of broiler litter into the soil surface on nutrient and bacterial transport in runoff. The experimental design was a randomized complete block with four treatments and three replications. Treatments were (i) unfertilized control; (ii) surface-appliedbroiler litter at 7.8 Mg ha(-1) without incorporation; (iii) surface-applied broiler litter at 7.8 Mg ha(-1) with immediate incorporation; and (iv) inorganic fertilizer N (urea ammonium nitrate, 32% N) and inorganic fertilizer P (triple superphosphate) at the recommended rate. Phosphorus was surface appliedat 25 kg ha(-1) and N was injected at 101 kg ha(-1) into the soil using a commercial liquid fertilizer applicator. Runoff was collected from small runoff plots (2.4 m by 1.6 m) established at the bottom side of main plots (13.7 m by 6.0 m). Incorporation of broiler litter reduced total N (TN), NO3-N, water soluble P (WSP), and total P (TP) concentrations in runoffby 35, 25, 61, and 64%, respectively, and litter-associated bacteria by two to three orders of magnitude compared with unincorporated treatment. No significant difference in total suspended solids (TSS) in runoffwas obtained between incorporated and unincorporated treatments. Incorporation of broiler litter into the surface soil in the no-till system immediately after application minimized the potential risk for surface nutrient losses and bacteria transport in runoff.  相似文献   

4.
The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.  相似文献   

5.
Incorporating applied phosphorus (P) sources can reduce P runoff losses and is a recommended best management practice. However, in soils with low P retention capacities, leaching can be a major mechanism for off-site P loss, and the P-source application method (surface or incorporation) may not significantly affect the total amount of off-site P loss. We utilized simulated rainfall protocols to investigate effects of P-source characteristics and application methods on the forms and amounts of P losses from six P sources, including five biosolids materials produced and/or marketed in Florida, and one inorganic fertilizer (triple superphosphate). A typical Florida Spodosol (Immokalee fine sand; sandy, siliceous, hyperthermic Arenic Alaquods) was used for the study, to which the P sources were each applied at a rate of 224 kg P ha(-1) (approximately the P rate associated with N-based biosolids applications). The P sources were either surface-applied to the soil or incorporated into the soil to a depth of 5 cm. Amended soils were subjected to three simulated rainfall events, at 1-d intervals. Runoff and leachate were collected after each rainfall event and analyzed for P losses in the form of soluble reactive P (SRP), total dissolved P (TDP), total P (TP), and bioavailable P (BAP) (in runoff only). Cumulative masses (runoff + leachate for the three rainfall events) of P losses from all the P sources were similar, whether the amendments were surface-applied or incorporated into the soil. The solubility of the amendment, rather than application method, largely determines the P loss potential in poorly P-sorbing Florida Spodosols.  相似文献   

6.
Phosphorus (P) in runoff from pastures amended with poultry litter may be a significant contributor to eutrophication of lakes and streams in Georgia and other areas in the southeastern United States. The objectives of this research were to determine the effects of litter application rate and initial runoff timing on the long-term loss of P in runoff from surface-applied poultry litter and to develop equations that predict P loss in runoff under these conditions. Litter application rates of 2, 7, and 13 Mg ha(-1), and three rainfall scenarios applied to 1- x 2-m plots in a 3 x 3 randomized complete block design with three replications. The rainfall scenarios included (i) sufficient rainfall to produce runoff immediately after litter application; (ii) no rainfall for 30 d after litter application; and (iii) small rainfall events every 7 d (5 min at 75 mm h(-1)) for 30 d. Phosphorus loss was greatest from the high litter rate and immediate runoff treatments. Nonlinear regression equations based on the small plot study produced fairly accurate (r(2) = 0.52-0.62) prediction of P concentrations in runoff water from larger (0.75 ha) fields over a 2-yr period. Predicted P concentrations were closest to observed values for events that occurred shortly after litter application, and the relative error in predictions increased with time after litter application. In addition, previously developed equations relating soil test P levels to runoff P concentrations were ineffective in the presence of surface-applied litter.  相似文献   

7.
While the poultry industry is a major economic benefit to several areas in the USA, land application of poultry litter to recycle nutrients can lead to impaired surface and ground water quality. Amending poultry litter with alum [Al3(SO4)2 x 14H2O] has received considerable attention as a method of economically reducing ammonia volatilization in the poultry house and soluble phosphorus in runoff waters. The objective of this study was to characterize the effect of alum on broiler litter decomposition and N dynamics under laboratory conditions. Litter that had been amended with alum in the poultry house after each of the first four of five flock cycles (Experiment I) and litter that had been amended with alum after removal from a poultry house after the third flock cycle (Experiment II) were compared with unamended litter in separate studies. The litters in Experiment I were surface-applied to simulate application to grasslands, while the litters in Experiment II were incorporated to simulate application to conventionally tilled crops. The only statistically significant differences in decomposition due to alum occurred early in Experiment II and the differences were small. The only statistically significant differences in net N mineralization, soil inorganic N, and soil NH4+-N in either experiment was found in Experiment I after 70 d of incubation where soil inorganic N was significantly greater for the alum treatment. Thus, alum had little effect on decomposition or N dynamics. Results of many of the studies on litter not amended with alum should be applicable to litters amended with alum to reduce P availability.  相似文献   

8.
Simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) losses via runoff in California are a potential source of environmental contamination because simazine is widely used for weed control during the rainy season from November to March. This study was conducted in two citrus orchards from three rainfall events to evaluate the effects of shallow mechanical incorporation on simazine losses in runoff during the winter. Simazine losses in runoff were compared between row middles that were either undisturbed, the normal orchard practice, or subjected to shallow mechanical incorporation. Mechanical incorporation of row middles significantly reduced runoff volumes by approximately 45 and 28% for the first and second runoff events, respectively. In undisturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.62 to 0.73 mg L(-1); then simazine concentrations rapidly decreased (0.03-0.35 mg L(-1)) from the second and third runoff events. In disturbed plots, simazine concentrations in runoff from the first runoff event ranged from 0.21 to 0.24 mg(-1), but simazine concentrations remained relatively constant between the three runoff events. Total mass recoveries of simazine in runoff ranged from 1.93 to 2.97% and from 0.70 to 0.74% of application from the undisturbed plots and from the disturbed plots, respectively. Low water infiltration rate inhibited surface-applied herbicide incorporation into the soil matrix with natural rainfall in compacted soils. Mechanical incorporation of row middles significantly reduced runoff volumes, simazine concentrations, and mass losses in runoff after application.  相似文献   

9.
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.  相似文献   

10.
Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.  相似文献   

11.
Land application of animal manures and fertilizers has resulted in an increased potential for excessive P losses in runoff to nutrient-sensitive surface waters. The purpose of this research was to measure P losses in runoff from a bare Piedmont soil in the southeastern United States receiving broiler litter or inorganic P fertilizer either incorporated or surface-applied at varying P application rates (inorganic P, 0-110 kg P ha(-1); broiler litter, 0-82 kg P ha(-1)). Rainfall simulation was applied at a rate of 76 mm h(-1). Runoff samples were collected at 5-min intervals for 30 min and analyzed for reactive phosphorus (RP), algal-available phosphorus (AAP), and total phosphorus (TP). Incorporation of both P sources resulted in P losses not significantly different than the unfertilized control at all application rates. Incorporation of broiler litter decreased flow-weighted concentration of RP in runoff by 97% and mass loss of TP in runoff by 88% compared with surface application. Surface application of broiler litter resulted in runoff containing between 2.3 and 21.8 mg RP L(-1) for application rates of 8 to 82 kg P ha(-1), respectively. Mass loss of TP in runoff from surface-applied broiler litter ranged from 1.3 to 8.5 kg P ha(-1) over the same application rates. Flow-weighted concentrations of RP and mass losses of TP in runoff were not related to application rate when inorganic P fertilizer was applied to the soil surface. Results for this study can be used by P loss assessment tools to fine-tune P source, application rate, and application method site factors, and to estimate extreme-case P loss from cropland receiving broiler litter and inorganic P fertilizers.  相似文献   

12.
Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.  相似文献   

13.
Computer models are a rapid, inexpensive way to identify agricultural areas with a high potential for P loss, but most models poorly simulate dissolved P release from surface-applied manures to runoff. We developed a simple approach to predict dissolved P release from manures based on observed trends in laboratory extraction of P in dairy, poultry, and swine manures with water over different water to manure ratios. The approach predicted well dissolved inorganic (R2 = 0.70) and organic (R2 = 0.73) P release from manures and composts for data from leaching experiments with simulated rainfall. However, it predicted poorly (R2 = 0.18) dissolved inorganic P concentrations in runoff from soil boxes where dairy, poultry, and swine manures had been surface-applied and subjected to simulated rainfall. Multiplying predicted runoff P concentrations by the ratio of runoff to rainfall improved the relationship between measured and predicted runoff P concentrations, but runoff P was still overpredicted for dairy and swine manures. We attributed this overprediction to immediate infiltration of dissolved P in the freely draining water of dairy and swine manure slurries upon their application to soils. Further multiplying predicted runoff dissolved inorganic P concentrations by 0.35 for dairy and 0.60 for swine manures resulted in an accurate prediction of dissolved P in runoff (R2 = 0.71). The ability of our relatively simple approach to predict dissolved inorganic P concentrations in runoff from surface-applied manures indicates its potential to improve water quality models, but field testing of the approach is necessary first.  相似文献   

14.
Research has shown that aluminum sulfate (alum) and phosphoric acid greatly reduce ammonia (NH3) volatilization from poultry litter; however, no studies have yet reported the effects of these amendments on field-scale composting of poultry litter. The objectives of this study were to (i) evaluate NH3 volatilization from composting litter by measuring both NH3 volatilization and changes in total nitrogen (N) in the litter and (ii) evaluate potential methods of reducing NH3 losses from composting poultry litter. Poultry litter was composted for 68 d the first year and 92 d the second year. Eleven treatments were screened in Year 1, which included an unamended control, a microbial mixture, a microbial mixture with 5% alum incorporated into the litter, 5 and 10% alum rates either surface-applied or incorporated, and 1 and 2% phosphoric acid rates either surface-applied or incorporated. Treatments in Year 2 included an unamended control, a microbial mixture, alum (7% by fresh wt.), and phosphoric acid (1.5% by fresh wt.). Alum and phosphoric acid reduced NH3 volatilization from composting poultry litter by as much as 76 and 54%, respectively. The highest NH3 emission rates were from microbial treatments each year. Compost treated with chemical amendments retained more initial N than all other treatments. Due to the cost and N loss associated with composting poultry litter, composting is not economical from an agronomic perspective compared with the use of fresh poultry litter.  相似文献   

15.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   

16.
Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn.  相似文献   

17.
ABSTRACT: Simulated rainfall was used on experimental field plots to compare the effect of chemical fertilizer and sludge application on sediment, nitrogen, and phosphorus in runoff from no-till and conventional tillage systems. Chemical fertilizer application under the no-till system resulted in the least amount of total N and P in surface runoff. However, sludge application under the no-till system resulted in the least amount of NO3-N and sediment in surface runoff. The worst water quality scenarios were observed when either sludge or chemical fertilizer were surface-applied under a conventional tillage system. Nitrogen losses from the conventional tillage system were minimized when sludge was incorporated into the soil. However, phosphorus and sediment yield from such a system were significantly higher when compared to phosphorus and sediment yield from the no-till system. The results from this study indicate that the use of sludge on agricultural land under a no-till system can be a viable alternative to chemical fertilizer for nitrogen and phosphorus control in runoff. A more cautious approach is recommended when the sludge is incorporated into the soil in a conventional tillage system because of potential for high sediment and phosphorus yield in surface runoff.  相似文献   

18.
Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.  相似文献   

19.
Concerns about regional surpluses of manure phosphorus (P) leading to increased P losses in runoff have led to interest in diet modification to reduce P concentrations in diets. The objectives of this study were to investigate how dietary P amendment affected P concentrations in litters and P losses in runoff following land application. We grew two flocks of turkeys on the same bed of litter using diets with two levels of non-phytate phosphorus (NPP), with and without phytase. The litters were incorporated into three soils in runoff boxes at a plant-available nitrogen (PAN) rate of 168 kg PAN/ha, with runoff generated on Days 1 and 7 under simulated rainfall and analyzed for dissolved reactive phosphorus (DRP) and total P. Litters were analyzed for water-soluble phosphorus (WSP) and total P, while soils in the runoff boxes were analyzed for WSP and Mehlich-3 phosphorus (M3-P). Formulating diets with lower NPP and phytase both decreased litter total P. Phytase had no significant effect on litter WSP at a 1:200 litter to water extraction ratio, but decreased WSP at a 1:10 extraction ratio. Using a combination of reducing NPP fed and phytase decreased the total P application rate by up to 38% and the P in surplus of crop removal by approximately 48%. Reducing the NPP fed reduced DRP in runoff from litter-amended soils at Day 1, while phytase had no effect on DRP concentrations. Increase in soil M3-P was dependent on total P applied, irrespective of diet. Reducing overfeeding of NPP and utilizing phytase in diets for turkeys should decrease the buildup of P in soils in areas of intensive poultry production, without increasing short-term concerns about dissolved P losses.  相似文献   

20.
Land application of poultry litter can provide essential plant nutrients for crop production, but ammonia (NH(3)) volatilization from the litter can be detrimental to the environment. A multiseason study was conducted to quantify NH(3) volatilization rates from surface-applied poultry litter under no-till and paraplowed conservation tillage managements. Litter was applied to supply 90 to 140 kg N ha(-1). Evaluation of NH(3) volatilization was determined using gas concentrations and the flux-gradient gas transport technique using the momentum balance transport coefficient. Ammonia fluxes ranged from 3.3 to 24% of the total N applied during the winter and summer, respectively. Ammonia volatilization was rapid immediately after litter application and stopped within 7 to 8 d. Precipitation of 17 mm essentially halted volatilization, probably by transporting litter N into the soil matrix. Application of poultry to conservation-tilled cropland immediately before rainfall events would reduce N losses to the atmosphere but could also increase NO(3) leaching and runoff to streams and rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号