首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
含氯苯和对邻硝基氯苯农药废水的混凝—氧化预处理   总被引:2,自引:1,他引:2  
采用混凝沉淀 -芬顿试剂氧化对含氯苯和对邻硝基氯苯农药废水进行预处理 ,探讨了不同条件下农药废水的处理效果。结果表明 ,废水经混凝处理后可去除 46 .2 %的COD ,BOD5/COD值有一定程度的提高 ;废水经芬顿试剂氧化处理后可去除 5 0 .9%的COD ,BOD5/COD值可从 0 .0 4提高到 0 .1  相似文献   

2.
灭多威农药废水处理技术   总被引:1,自引:0,他引:1  
采用酸化、氧化、铁炭微电解、兼氧-好氧生化技术处理灭多威农药生产废水(简称废水)。实验结果表明:废水经酸化处理后可回收H2S和CH3SH,经氧化处理后可去除废水的恶臭气味,经铁炭微电解处理后COD总去除率平均为90.7%,废水可生化性指标BOD5/COD从0升至0.30以上;预处理后的废水再经过兼氧+好氧生化处理,COD达到GB8978-1996(污水综合排放标准》中的一级标准100mg/L以下。  相似文献   

3.
采用混凝法分别以聚合氯化铁(PFC)、聚合氯化铝(PAC)和聚合硫酸铁(PFS)为混凝剂处理天津某石油化工厂二级氧化处理工艺出水,PFC对废水COD的去除效果最好,在PFC加入量为120mg/L时,废水的COD去除率最高,为22.35%。经正交实验确定了Fenton试剂氧化法处理废水的最佳实验条件为:Fe^2+加入量290mg/L、H2O2加入量100mg/L、pH=6、反应时间30min,此时COD去除率为20.45%。活性炭吸附法对废水的处理效果随活性炭加入量增加而改善,活性炭的最佳加入量为2000mg/L,此时废水的COD去除率最高,为87.78%。  相似文献   

4.
Fenton氧化-生物接触氧化工艺处理甲醛和乌洛托品废水   总被引:5,自引:3,他引:5  
采用Fenton氧化一生物接触氧化工艺处理含甲醛和乌洛托品的模拟废水(简称废水),在H2O2(体积分数30%)加入量2.5g/L、H2O2与Fe^2+质量浓度比3.75、反应时间3h、不调节废水初始pH的Fenton氧化预处理最佳操作条件下,废水COD从1000mg/L左右降至300mg/L,COD去除率达72%。原废水完全无法直接进行生化处理,经Fenton氧化预处理后其BOD,/COD约为0.5,易于生化处理。Fenton氧化一生物接触氧化工艺处理废水,生物接触氧化停留时间为12h时,废水COD去除率高达94%,处理后出水COD小于70mg/L,处理效果很好。  相似文献   

5.
宋扬  汪晓军 《化工环保》2008,28(1):54-58
采用絮凝沉淀-Fenton试剂氧化法处理含高浓度硫酸盐的洗涤剂生产废水(简称废水),考察了各种因素对COD去除率的影响。实验结果表明:根据实际废水的水质情况,选用聚合氯化铝(PAC)为絮凝剂,PAC最佳加入量为0.3g/L,经絮凝处理后COD去除率为42.3%;Fenton试剂氧化的最佳操作条件为:n(H2O2):n(Fe^2+)=0.5、H2O2加入量为7mmol/L、反应时间为2h,不调节废水初始pH,经Fenton试剂氧化处理后COD去除率为70%以上。经絮凝沉淀-Fenton试剂氧化法处理后,废水COD由1950mg/L降至240mg/L,总的COD去除率为87.7%,废水处理效果良好。  相似文献   

6.
徐文倩 《化工环保》2013,33(4):316-320
采用混凝-Fenton试剂氧化或混凝-臭氧氧化两种氧化技术预处理上海某医药集团原料药废水。实验结果表明:采用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)复合混凝处理该废水,在混凝pH为9.5、混凝时间1h、PAC和PAM加入量分别为600mg/L和12mg/L时,COD的去除率可达23%;混凝后废水再分别用臭氧氧化和Fenton试剂氧化处理,臭氧氧化明显比Fenton试剂氧化经济有效,在臭氧氧化pH为10、臭氧加入量为15g/L、臭氧氧化时间为1h的条件下,废水COD去除率为27.8%,废水BOD5/COD明显提高,为后续生化处理提供了良好的条件。  相似文献   

7.
铁炭微电解-Fenton试剂氧化法预处理广灭灵及丙草胺废水   总被引:3,自引:1,他引:3  
采用铁炭微电解~Fenton试剂氧化法预处理广灭灵和丙草胺废水(简称废水),考察了H2O2加入量、高浓度废水COD对废水处理效果的影响,进行了连续流废水处理实验。实验结果表明:Fenton试剂氧化反应的废水处理效果明显好于铁炭微电解反应;铁炭微电解对COD的去除率可达60.6%,Fenton试剂氧化反应后COD的总去除率可达72.3%;连续流废水处理效果差于静态实验。处理后,低浓度废水的BOD,/COD从0.28~0.32增至0.47,高浓度废水的BOD,/COD从0.39增至0.47。  相似文献   

8.
为了降低松香改性酚醛树脂生产废水的COD并改善其可生化性,采用微电解—芬顿氧化工艺对该废水进行预处理。研究了pH、微电解反应时间、曝气、双氧水投加量等对微电解和芬顿氧化处理效果的影响,考察了COD去除率和BOD5/COD值的变化趋势。实验结果表明:曝气条件下,调节废水pH为4、进行2次微电解、微电解反应时间各2.0 h时,废水的COD去除率为38%,BOD5/COD值提高为0.18;再投加7.5%(w)的双氧水,废水的COD去除率为65.3%,BOD5/COD值为0.37。采用微电解—芬顿氧化的预处理工艺,不仅有效去除了废水的COD,而且显著改善了废水的可生化性。  相似文献   

9.
催化湿式氧化法处理吡虫啉农药废水   总被引:2,自引:0,他引:2  
自制了Cu/Mn,Cu/Ce,Cu/Ni,Ce/Mn,Ce/Ag等催化剂,经过性能比较,选择催化活性较高且金属溶出量较小的Cu/Ni作催化剂。用催化湿式氧化法处理吡虫啉农药废水,考察了各种因素对处理效果的影响。实验结果表明:在进水pH为6.93、Cu/Ni加入量为4.0g、反应温度为190oC、氧分压为1.6MPa、反应时间为120min的条件下,COD去除率为95%;处理后废水的BOD5/COD从0.093增至0.590,可生化性明显改善。  相似文献   

10.
为了降低松香改性酚醛树脂生产废水的COD并改善其可生化性,采用微电解—芬顿氧化工艺对该废水进行预处理.研究了pH、微电解反应时间、曝气、双氧水投加量等对微电解和芬顿氧化处理效果的影响,考察了COD去除率和BOD5/COD值的变化趋势.实验结果表明:曝气条件下,调节废水pH为4、进行2次微电解、微电解反应时间各2.0 h...  相似文献   

11.
干法腈纶废水处理技术   总被引:2,自引:0,他引:2  
采用铁碳内电解-混凝沉淀预处理工艺处理干法腈纶废水。废水pH为4左右,经内电解反应2h,出水用聚合硫酸铁和阴离子型聚丙烯酰胺混凝沉淀1.5h后,废水的COD由1650mg/L降到1310mg/L,去除率为20.6%,BOD5/COD由原来的0.27提高到0.38。然后再采用水解酸化-好氧生化一生物硝化工艺处理预处理出水,最终出水COD为148mg/L,BOD,为16mg/L,氨氮质量浓度为13mg/L,SS质量浓度小于100mg/L,出水水质达到腈纶行业一级排放标准。  相似文献   

12.
采用铁屑流化床预处理、负载活性炭催化剂催化氧化和混凝沉淀组合工艺处理有机硅废水。废水经铁屑流化床预处理后Cu^2+的去除率达99.90%,COD去除率达23.9%;负载活性炭催化剂催化氧化的最佳工艺条件:催化剂质量浓度为0.5g/L,H202质量浓度为2400mg/L,不投加FeSO4,反应时间为60min,体系pH为3-4,COD去除率达82%。催化氧化后的废水经混凝沉淀处理,调节pn为8-9,可达标排放。  相似文献   

13.
混凝-催化氧化法预处理氨基C酸生产废水   总被引:1,自引:1,他引:0  
采用混凝-催化氧化组合工艺预处理氨基C酸生产废水,考察了混凝剂加入量、废水pH、氧化剂加入量、反应时间和催化剂的重复使用次数等因素对废水处理效果的影响。混凝-催化氧化法预处理氨基C酸生产废水的最佳工艺条件为:质量分数为10%的FeSO4溶液作混凝剂,加入量为250InL/L;质量分数为1%的ClO2溶液作氧化剂,加入量为75mL/L;Ni/AC作催化剂,加入量为40g/L;废水pH为3.2;催化氧化反应时间为60min。在该条件下,废水的COD去除率可达78.4%,BOD,/COD由原来的0.076提高到0.292,可生化性得到明显改善。Ni/AC催化剂连续使用7次后仍保持稳定的催化活性。经济性初步分析表明,1t废水的处理成本约为16元。  相似文献   

14.
建筑涂料生产废水的处理技术   总被引:3,自引:0,他引:3  
采用混凝沉淀-芬顿试剂催化氧化-活性炭吸附工艺对建筑涂料生产废水的处理进行了研究。用硫酸铝作混凝剂,投加量为500mg/L:芬顿试剂法处理的废水pH为6.0,H2O2/COD值为4.0,FeSO4投加量为1540mg/L,氧化反应时间大于4h;活性炭投加量为0.2g/L时,处理后出水COD小于100mg/L。  相似文献   

15.
感光材料行业排出的异丙醇废水,BOD5/COD为0.40左右,经水解酸化处理后BOD5/COD提高至0.05左右,证实了水解酸化处理具有提高异丙酸废水可生化性的功能。在进水COD为2000-3000mg/L条件下,用水解酸化-好氧生化工艺处理,COD总去除率可达90%左右,BOD5总去除率可达95%左右,均明显优于平等对照组传统活性污泥法的处理效果。  相似文献   

16.
采用混凝-间歇式活性污泥(SBR)法处理炼油废水,考察了混凝、SBR法对炼油废水的处理效果。实验结果表明:在硫酸铝、聚丙烯酰胺、CaCl2加入量分别为50,3,100mg/L的条件下,油去除率为82.7%,COD去除率为57.1%,BOD,/COD为0.24,混凝处理出水具有一定的可生化性;对混凝处理出水用SBR法进行厌氧水解2h、好氧曝气9h的生物处理后,出水COD低于150mg/L,COD去除率在80%左右。  相似文献   

17.
混凝—催化氧化法处理丁苯橡胶生产废水   总被引:3,自引:0,他引:3  
郭青  赵旭涛  王维 《化工环保》2006,26(6):494-497
以聚合氯化铝(PAC)、阴离子聚丙烯酰胺(PAM)为混凝剂,以H2O2-O3为氧化剂,采用混凝-催化氧化法处理对丁苯橡胶生产废水。考察了混凝剂种类及其加入量、废水pH对混凝处理效果的影响,氧化剂及其加入量、反应时间和废水pH对COD去除率的影响。实验得出的最佳工艺条件:混凝实验,废水pH为7、PAC和PAM加入量为400mg/L和4mg/L;催化氧化实验,废水pH为7~8、H2O2加入量为200mg/L、H2O2与O3的质量比为0.5。处理后,废水COD从860mg/L降至145mg/L,COD去除率达83.1%,出水水质达到国家二级排放标准。  相似文献   

18.
用酸析-Fenton试剂氧化-混凝法对自偶氧化清洁制浆废水进行预处理,考察了各种因素对处理效果的影响。最佳处理条件:酸析时的废水pH为3.0;酸析后上层清液无需调节pH,加水稀释至COD为2000mg/L后进行Fenton试剂氧化,H2O2加入量为84.56mmol/L,FeS04加入量为8.44mmol/L,反应时间60min;混凝时Ca(OH):加入量为2g/L。最终出水的COD为577.20mg/L(COD去除率为71.14%),色度为36倍,pH为8.60。  相似文献   

19.
UV/Fenton氧化-混凝联合工艺处理含酚废水   总被引:8,自引:0,他引:8  
采用UV/Fenton氧化-混凝联合工艺对模拟苯酚废水进行处理,探讨了UV/Fenton预氧化程度和混凝处理条件对模拟苯酚废水处理效果的影响。结果表明,采用混凝处理,COD去除率仅为14.1%;当UV/Fenton预氧化处理过程中H2O2的质量浓度为150~300mg/L时,废水的混凝性能可提高1.5倍以上;当H2O2质量浓度为450mg/L、光反应时间为30min时,采用UV/Fenton氧化一混凝工艺联合处理后COD去除率达82.7%。苯酚废水采用UV/Fenton预氧化处理后,进行混凝处理过程的适宜pH为6.5,混凝剂Fe^3 的适宜质量浓度为500mg/L.  相似文献   

20.
pH调节-Fenton试剂氧化法预处理间甲酚生产氧化废水   总被引:15,自引:2,他引:13  
采用pH调节结合Fenton试剂氧化的方法对间甲酚生产氧化废水进行预处理,探讨了pH调节条件及Fenton试剂氧化条件对废水处理效果的影响。结果表明,在室温下将废水pH调节至4.0时,由于其中的部分有机污染物析出,COD可以从78000mg/L下降至61000mg/L,COD去除率达20%以上;接着在H2O2质量浓度与COD的比值为0.18、Fe^2+与H2O2质量浓度的比值为0.267、反应时间为20min的条件下对废水进行Fenton试剂氧化处理,COD可以进一步下降至26000mg/L,COD去除率接近70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号