首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
/ Tidal marshes have been actively restored in Connecticut for nearly 20 years, but evaluations of these projects are typically based solely on observations of vegetation change. A formerly impounded valley marsh at the Barn Island Wildlife Management Area is a notable exception; previous research at this site has also included assessments of primary productivity, macroinvertebrates, and use by fishes. To determine the effects of marsh restoration on higher trophic levels, we monitored bird use at five sites within the Barn Island complex, including both restoration and reference marshes. Use by summer bird populations within fixed plots was monitored over two years at all sites. Our principal focus was Impoundment One, a previously impounded valley marsh reopened to full tidal exchange in 1982. This restoration site supported a greater abundance of wetland birds than our other sites, indicating that it is at least equivalent to reference marshes within the same system for this ecological function. Moreover, the species richness of birds and their frequency of occurrence at Impoundment One was greater than at 11 other estuarine marshes in southeastern Connecticut surveyed in a related investigation. A second marsh, under restoration for approximately ten years, appears to be developing in a similar fashion. These results complement previous studies on vegetation, macroinvertebrates, and fish use in this system to show that, over time, the reintroduction of tidal flooding can effectively restore important ecological functions to previously impounded tidal marshes.KEY WORDS: Estuarine; Tidal marsh; Wetland birds; Restoration  相似文献   

2.
Macroinvertebrates were examined on an impounded valley marsh in Stonington, Connecticut, that has changed from aTypha-dominated system to one with typical salt-marsh vegetation during 13 years following the reintroduction of tidal exchange. Animal populations on this restored impounded marsh were evaluated by comparing them with populations on a nearby unimpounded valley marsh of roughly the same size. Populations of the high marsh snail,Melampus bidentatus Say, were quantitatively sampled along transects that extended from the water-marsh edge to the upland; those of the ribbed mussel,Geukensia demissa Dillwyn, were sampled in low marsh areas on transects along the banks of creeks and mosquito ditches. The occurrence of other marsh invertebrates also was documented, but their abundance was not measured. The mean density ofMelampus was 332±39.6 SE/m2 on the restored impounded marsh and 712±56.0 SE/m2 on the unimpounded marsh. However, since snails were larger on the restored impounded marsh, the difference in snail biomass was less pronounced than the difference in snail density. MeanMelampus biomass was 4.96±0.52 SE g dry wt/m2 on the restored impounded marsh and 6.96±0.52 SE g dry wt/m2 on the unimpounded marsh. On the two marshes, snail density and biomass varied in relation to plant cover and other factors. The density and biomass ofGeukensia at the edge of the marsh were comparable on the restored impounded and unimpounded marshes. Mean mussel densities ranged from 80 to 240/m2 and mean mussel biomass varied from 24.8–64.8 g dry wt/m2 in different low marsh areas. In contrast, below the impoundment dike, meanGeukensia density was 1100±96.4 SE/m2 and meanGeukensia biomass was 303.6±33.28 SE g dry wt/m2. A consideration of all available evidence leads to the conclusion that the impounded marsh is in an advanced phase of restoration.  相似文献   

3.
Many coastal resource managers believe estuarine marshes are critically important to estuarine fish and shellfish, not only because of the habitat present for juvenile stages, but also because of the export of detritus and plant nutrients that are consumed in the estuary. Concern has been widely expressed that diking and flooding marshes (impounding) for mosquito control and waterfowl management interferes with these values of marshes. Major changes caused by impoundment include an increase in water level, a decrease in salinity, and a decrease in the exchange of marsh water with estuarine water. Alteration of species composition is dramatic after impoundment. Changes in overall production and transport phenomena, however—and the consequences of these changes— may not be as great in some cases as the concern about these has implied. Although few data are available, a more important concern may be the reduction of access by estuarine fish and shellfish to the abundant foods and cover available in many natural, as well as impounded, marshes. Perhaps even more important is the occasional removal of free access to open water when conditions become unfavorable in impounded marsh that is periodically opened and closed. Collection of comparative data on the estuarine animal use of various configurations of natural and impounded marshes by estuarine animals should lead to improved management of both impounded and unimpounded marshes.  相似文献   

4.
Salt marsh vegetation change in response to tidal restriction   总被引:4,自引:0,他引:4  
Vegetation change in response to restriction of the normal tidal prism of six Connecticut salt marshes is documented. Tidal flow at the study sites was restricted with tide gates and associated causeways and dikes for purposes of flood protection, mosquito control, and/or salt hay farming. One study site has been under a regime of reduced tidal flow since colonial times, while the duration of restriction at the other sites ranges from less than ten years to several decades. The data indicate that with tidal restriction there is a substantial reduction in soil water salinity, lowering of the water table level, as well as a relative drop in the marsh surface elevation. These factors are considered to favor the establishment and spread ofPhragmites australis (common reed grass) and other less salt-tolerant species, with an attendant loss ofSpartina-dominated marsh. Based on detailed vegetation mapping of the study sites, a generalized scheme is presented to describe the sequence of vegetation change from typicalSpartina- toPhragmites-dominated marshes. The restoration of thesePhragmites systems is feasible following the reintroduction of tidal flow. At several sites dominated byPhragmites, tidal flow was reintroduced after two decades of continuous restriction, resulting in a marked reduction inPhragmites height and the reestablishment of typical salt marsh vegetation along creekbanks. It is suggested that large-scale restoration efforts be initiated in order that these degraded systems once again assume their roles within the salt marsh-estuarine ecosystem.  相似文献   

5.
Experimental short-term desalination and drainage of salt marsh cores in greenhouse microcosms caused Spartina production to increase after one growing season, reflecting decreased salt stress and sulfide toxicity. However, production thereafter declined, likely due to pyrite oxidation and acidification in drained treatments and sulfide accumulation in waterlogged treatments. A survey of longer-term (decadal) effects of diking on peat composition of Cape Cod, Massachusetts, USA, marshes revealed acidification, Fe(II) mobilization, and decreased organic content in drained sites. Despite the aerobic decomposition of organic matter, abundant nutrients remained as sorbed NH4 and mineral-bound PO4. In diked, seasonally waterlogged sites, porewater alkalinity, sulfide, ammonium and orthophosphate were much lower, and organic solids higher, than in adjacent natural marsh. Seawater was added to cores from diked marshes to study the effects of tidal restoration. Salination of the drained peat increased porewater pH, alkalinity, ammonium, orthophosphate, Fe, and Al; copious ammonium N, and Fe(II) for sulfide precipitation favored Spartina growth. Salination of diked–waterlogged peat increased sulfate reduction and caused 6–8 cm of sediment subsidence. The resulting increase in porewater sulfides and waterlogging decreased vigor of transplanted Spartina alterniflora. Results indicate that seawater restoration should proceed cautiously to avoid nutrient loading of surface waters in drained sites or sulfide toxicity in diked–waterlogged marshes.  相似文献   

6.
A three-year study of Connecticut, USA, salt-marsh vegetation was undertaken to determine the relationship of its distribution on the marsh surface to tidal levels, particularly mean high water (MHW) as measured on each of three sites representing different tidal amplitudes. Elevations and species present were measured on 1-m2 grids in 10x 70-m belt transects at each site. After the data were subjected to discriminant analysis and other standard statistical procedures, the results showed that 98.4% of all observations ofSpartina alterniflora Loisel. occurred at or below MHW. The data can aid in salt-marsh restoration by offering a reliable indicator of what species should be planted when restored elevations and on-site MHW are known.  相似文献   

7.
Data are presented on the vegetation dynamics of two impounded marshes along the Indian River Lagoon, in east-central Florida, USA. Vegetation in one of the marshes (IRC 12) was totally eliminated by overflooding and by hypersaline conditions (salinities over 100 ppt) that developed there in 1979 after the culvert connecting the marsh with the lagoon was closed. Over 20% recovery of the herbaceous halophytesSalicornia virginica, S. bigelovii, andBatis maritima was observed at that site after the culvert was reopened in 1982, but total cover in the marsh remains well below the original 75%. No recovery of mangroves was observed at this site. The second site (SLC 24), while remaining isolated from the lagoon during much of the study, did not suffer the complete elimination of vegetation experienced at the first site. At this location, mangroves increased in cover and frequency with a concomitant decrease in herbaceous halophytes. Considerable damage to the vegetation was evident at IRC 12 when the impoundment was closed and flooded for mosquito control in 1986. Although the damage was temporary, its occurrence emphasizes the need of planning and constant monitoring and adjustment of management details as conditions within particular marshes change. Storms and hurricanes may be important in promoting a replacement of black mangroves by red mangroves in closed impoundments because the former cannot tolerate pneumatophore submergence for long periods of time. University of Florida-IFAS Journal Series R-00521.  相似文献   

8.
Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.  相似文献   

9.
Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.  相似文献   

10.
The high degree of physical disturbance associated with conventional response options to oil spills in wetlands is driving the investigation of alternative cleanup methodologies. In March 1995, a spill of gas condensate in a brackish marsh at Rockefeller Wildlife Refuge in southwestern Louisiana was remediated through the use of in situ burning. An assessment of vegetation recovery was initiated in three treatment marshes: (1) oil-impacted and burned, (2) oil impacted and unburned, and (3) a nonoiled unburned reference. We compared percent cover, stem density, and biomass in the treatment marshes to define ecological recovery of the marsh vegetation and soil hydrocarbon content to determine the efficacy of in situ burning as a cleanup technique. Burning led to a rapid decrease in soil hydrocarbon concentrations in the impacted-and-burned marsh to background levels by the end of the first growing season. Although a management fire accidentally burned the oil-impacted-and-unburned and reference marshes in December 1995, stem density, live biomass, and total percent cover values in the oil-impacted-and-burned marsh were equivalent to those in the other treatment marshes after three years. In addition, plant community composition within the oil-impacted-and-burned marsh was similar to the codominant mix of the grasses Distichlis spicata (salt grass) and Spartina patens (wire grass) characteristic of the surrounding marsh after the same time period. Rapid recovery of the oil-impacted-and-unburned marsh was likely due to lower initial hydrocarbon exposure. Water levels inundating the soil surface of this grass-dominated marsh and the timing of the in situ burn early in the growing season were important factors contributing to the rapid recovery of this wetland. The results of this in situ burn evaluation support the conclusion that burning, under the proper conditions, can be relied upon as an effective cleanup response to hydrocarbon spills in herbaceous wetlands.  相似文献   

11.
Since tidal marshes and estuaries cover large areas of the world's coasts and exhibit a very high net primary productivity, they offer a most important food source for an ever increasing world population. The food web of numerous estuaries and coastal waters is based on the primary productivity of coastal marshes that constitute centers of solar energy fixation and an important link in the mineral cycles. The fixed carbon and minerals enterthe water primarily as detritus where a complex food web makes them accessible to commercially important fish and benthic communities. With the launch of LANDSAT, NOAA-2, and Skylab, relatively high resolution spacecraft data became available for mapping and inventorying tidal marshes and their productivity on a global scale. Upwelling regions that attract large fish populations as well as other coastal water properties relating to the presence of finfish, Crustacea, and shellfish could be identified and observed. Using multispectral analysis techniques, classification accuracies greater than 80 percent have been obtained for most marsh plant species, and greater than 90 percent for key types such asSpartina alterniflora, which is the primary producer in large tide marshes of the coastal eastern USA. The capacity of remote sensors on spacecraft such as NOAA-2, LANDSAT, and Skylab to assess coastal food resources on a global scale is discussed from the point of view of resolution, classification accuracy, and cost effectiveness.  相似文献   

12.
Satellite Synthetic Aperture Radar (SAR) was evaluated as a method to operationally monitor the occurrence and distribution of storm‐ and tidal‐related flooding of spatially extensive coastal marshes within the north‐central Gulf of Mexico. Maps representing the occurrence of marsh surface inundation were created from available Advanced Land Observation Satellite (ALOS) Phased Array type L‐Band SAR (PALSAR) (L‐band) (21 scenes with HH polarizations in Wide Beam [100 m]) data and Environmental Satellite (ENVISAT) Advanced SAR (ASAR) (C‐band) data (24 scenes with VV and HH polarizations in Wide Swath [150 m]) during 2006‐2009 covering 500 km of the Louisiana coastal zone. Mapping was primarily based on a decrease in backscatter between reference and target scenes, and as an extension of previous studies, the flood inundation mapping performance was assessed by the degree of correspondence between inundation mapping and inland water levels. Both PALSAR‐ and ASAR‐based mapping at times were based on suboptimal reference scenes; however, ASAR performance seemed more sensitive to reference‐scene quality and other types of scene variability. Related to water depth, PALSAR and ASAR mapping accuracies tended to be lower when water depths were shallow and increased as water levels decreased below or increased above the ground surface, but this pattern was more pronounced with ASAR. Overall, PALSAR‐based inundation accuracies averaged 84% (= 160), while ASAR‐based mapping accuracies averaged 62% (= 245).  相似文献   

13.
Salt marshes dominated by Spartina alterniflora and the associated networks of tidal creeks that drain them are characteristic geographical features of southeastern estuaries, important nursery habitat areas, and preferred sites for residential development. As the size of the coastal population increases, so has the number of requests for dock permits. With each new request for a dock permit, public concerns about the cumulative environmental impacts of dock proliferation on the coastal environment have increased. The objective of this particular study was to evaluate the impacts of shading by dock structures on stem densities of S. alterniflora in South Carolina coastal marshes. Shading impacts under individual docks were extrapolated to the tidal creek (local), county, and statewide scales. Dock structures were sampled both under and next to the walkway in the Charleston Harbor area of South Carolina. The density of S. alterniflora under docks was significantly lower than that which occurred next to the docks (i.e., 5 m away) for the short-form, tall-form, and both forms combined. We estimated that shading effects from dock structures in South Carolina decreased the stem density of S. alterniflora by 71%. Dock shading effects were small when evaluated from the perspective of the amount of marsh that occurs within specific tidal creeks (0.03–0.72%), in coastal counties at a maximum dock length (0.01–0.98%), or statewide (0.01–0.13%) at a maximum dock length. However, approximately 7,000 docks have been permitted over the last decade, resulting in a loss of salt marsh equivalent to 60 ha.1Denise M. Sangers present address: Office of Ocean and Coastal Resource Management, South Carolina Department of Health and Environmental Control, 1362 McMillan Avenue, Suite 400 Charleston, South Carolina 29405, USA. 2 A. Frederick Hollands present address: Hollings Marine Laboratory, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA.  相似文献   

14.
Dredged material levees in coastal Louisiana are normally associated with pipeline canals or, more frequently, canals dredged through the wetlands to allow access to drilling locations for mineral extraction. The hydrologic impact on marshes behind the levee is of concern to coastal resource managers because of the potential impact on sediment transport and deposition, and the effect on estuarine organism access to valuable nursery habitat. This study examined the effects of gaps in dredged material levees, compared to continuous levees and natural channel banks, on these two aspects of marsh function. Field studies for sediment deposition were conducted biweekly for a year, and nekton samples were collected in spring and fall. Variation in nekton density among study arears and landscape types was great in part because of the inherent sampling gear issues and in part because of differences in characteristics among areas. Nekton densities were generally greater in natural compared to leveed and gapped landscapes. Differences in landscape type did not explain patterns in sediment deposition. The gaps examined appear to be too restrictive of marsh flooding to provide efficient movements of floodwaters onto the marsh during moderate flooding events. The “trapping” effect of the levees increases sediment deposition during extreme events. Gapping material levees may be an effective method of partially restoring upper marsh connection to nekton, but this method may work best in lower elevation marshes where nekton use is greater.  相似文献   

15.
Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, aSalicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity ofS. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact  相似文献   

16.
Roots of salt marsh plant speciesSpartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.  相似文献   

17.
Construction of 653 ha of salt marsh habitat from dredged material near the Aransas National Wildlife Refuge, Texas, has been proposed, with the goal of increasing the area of habitat available to endangered whooping cranes (Grus americana). We assessed prototype created wetlands, and their similarity to natural reference sites, in terms of topography, vegetation, and hydrology. The created sites were steeply sloped relative to natural sites and were dominated by monotypic stands of Spartina alterniflora. Natural sites were dominated by vegetation more tolerant of desiccation and hypersalinity and by unvegetated salt pans. Differences in vegetation communities and distributions of habitat types resulted from efforts to enhance habitat diversity in created marsh cells through manipulation of marsh topography. However, the scale at which this diversity occurred in natural marsh of the study area was not considered. When constructing wetlands in cellular configurations, we recommend creation of large complexes of adjoining, hydrologically linked, cells wherein the desired habitat diversity is created at the scale of the entire complex, rather than within a single cell. Suggested design modifications would increase the similarity of created marshes to natural reference sites, potentially improving habitat function.  相似文献   

18.
Returning canal spoil banks into canals, or backfilling, is used in Louisiana marshes to mitigate damage caused by dredging for oil and gas extraction. We evaluated 33 canals backfilled through July 1984 to assess the success of habitat restoration. We determined restoration success by examining canal depth, vegetation recolonization, and regraded spoil bank soils after backfilling. Restoration success depended on: marsh type, canal location, canal age, marsh soil characteristics, the presence or absence of a plug at the canal mouth, whether mitigation was on- or off-site, and dredge operator performance.Backfilling reduced median canal depth from 2.4 to 1.1 m, restored marsh vegetation on the backfilled spoil bank, but did not restore emergent marsh vegetation in the canal because of the lack of sufficient spoil material to fill the canal and time. Median percentage of cover of marsh vegetation on the canal spoil banks was 51.6%. Median percentage of cover in the canal was 0.7%. The organic matter and water content of spoil bank soils were restored to values intermediate between spoil bank levels and predredging marsh conditions.The average percentage of cover of marsh vegetation on backfilled spoil banks was highest in intermediate marshes (68.6%) and lowest in fresh (34.7%) and salt marshes (33.9%). Average canal depth was greatest in intermediate marshes (1.50 m) and least in fresh marshes (0.85 m). Canals backfilled in the Chenier Plain of western Louisiana were shallower (average depth = 0.61 m) than in the eastern Deltaic Plain (mean depth range = 1.08 to 1.30 m), probably because of differences in sediment type, lower subsidence rate, and lower tidal exchange in the Chenier Plain. Canals backfilled in marshes with more organic soils were deeper, probably as a result of greater loss of spoil volume caused by oxidation of soil organic matter. Canals ten or more years old at the time of backfilling had shallower depths after backfilling. Depths varied widely among canals backfilled within ten years of dredging. Canal size showed no relationship to canal depth or amount of vegetation reestablished. Plugged canals contained more marsh reestablished in the canal and much greater chance of colonization by submerged aquatic vegetation compared with unplugged canals. Dredge operator skill was important in leveling spoil banks to allow vegetation reestablishment. Wide variation in dredge performance led to differing success of vegetation restoration.Complete reestablishment of the vegetation was not a necessary condition for successful restoration. In addition to providing vegetation reestablishment, backfilling canals resulted in shallow water areas with higher habitat value for benthos, fish, and waterfowl than unfilled canals. Spoil bank removal also may help restore water flow patterns over the marsh surface. Increased backfilling for wetland mitigation and restoration is recommended.  相似文献   

19.
The method of flow analysis, which is similar to economic input-output analysis, is presented as a means of making flow models of ecological systems more useful to environmental managers. This paper considers as an illustration the extent to which nitrogen fertilizer added toSpartina salt marsh sediments can enhance shellfish growth. Nitrogen flow models of both the Barataria Bay salt marsh complex of coastal Louisiana and the Sippewissett Marsh of western Cape Cod are analyzed. The analysis shows the transfer of added nitrogen to shellfish growth viaSpartina growth, decomposition, and detrital feeding to be considerably less efficient than its transfer toSpartina growth itself. These results are similar for both marsh systems, despite their great physical differences and despite the inclusion of considerably more microbial processing of nitrogen in the Barataria Bay model than in the Sippewissett models. The results suggest that the most efficient mechanism by which added nitrogen could enhance shellfish growth in salt marshes may have to bypass the route through theSpartina life cycle.  相似文献   

20.
Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seasonal relationships between denitrification enzyme activity (DEA) in salt marshes of Narragansett Bay, Rhode Island, and watershed N loadings, land use, and terrestrial hydric soils. In a manipulative experiment, the effect of nutrient enrichment on DEA was examined in a saltmeadow cordgrass [Spartina patens (Aiton) Muhl.] marsh. In the high marsh, DEA significantly (p < 0.05) increased with watershed N loadings and decreased with the percent of hydric soils in a 200-m terrestrial buffer. In the low marsh, we found no significant relationships between DEA and watershed N loadings, residential land development, or terrestrial hydric soils. In the manipulation experiment, we measured increased DEA in N-amended treatments, but no effect in the P-amended treatments. The positive relationships between N loading and high marsh DEA support the hypothesis that salt marshes may be important buffers between the terrestrial landscape and estuaries, preventing the movement of land-derived N into coastal waters. The negative relationships between marsh DEA and the percent of hydric soils in the adjacent watershed illustrate the importance of natural buffers within the terrestrial landscape. Denitrification enzyme activity appears to be a useful index for comparing relative N exposure and the potential denitrification activity of coastal salt marshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号