首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Fenton氧化和混凝法对某制药厂的噻烷和噻唑生产废水进行预处理,结果表明噻烷废水宜采用先芬顿后混凝,而噻唑废水宜采用先混凝后芬顿。噻烷废水和噻唑废水H2O2投加量均为100 m L/L,反应时间均为6 h,最佳pH为2~3,FeSO4·7H2O与H2O2的最佳物质的量比分别为1∶5和1∶6,FeSO4·7H2O的投加量为49.06 g/L和40.88 g/L。噻唑废水预混凝处理的液态聚合氯化铝铁最佳投加量为40 m L/L;噻烷废水芬顿氧化后的混凝剂Ca(OH)2投加量为20 g/L,该药剂在混凝处理的同时调节系统的pH至7左右。2种组合技术对进水COD在15 000 mg/L左右的噻烷/噻唑制药废水的去除率均在85%以上。  相似文献   

2.
为了提高生化单元入水可生化性,采用紫外-芬顿法预处理固定床气化废水,通过单因素试验及正交试验法分析了H_2O_2投加量、FeSO_4投加量及紫外灯功率对预处理效果的影响。结果表明:3种因素对COD去除率及可生化性影响都较为显著,最佳工艺参数为H_2O_2投加量22 m L/L,FeSO_4投加量2.7 g/L、紫外灯功率为2.5 kW;在最佳参数条件下进行72 h连续试验,COD去除率为50%~54%,出水可生化性为0.4~0.43,处理效果稳定。  相似文献   

3.
使用Fenton试剂与过硫酸氢钾联合对舱底水的净化处理进行了研究,通过控制变量法确定最佳实验条件。结果表明在pH=3,Fenton试剂中30%H2O2投加量为19.2mL/L,FeSO4投加量为5.21g/L,nFe2+/nH2O2=0.0997时,进行3次絮凝处理后舱底水的化学耗氧量(COD)从963mg/L降到120mg/L,水体COD去除率高达87.54%。同时可以有效去除水体似H2S气味,且水体颜色由深棕色浑浊状态变为无色透明状态。絮凝后的水样使用过硫酸氢钾进行氧化处理,在酸性条件下,反应温度为50~60℃时,过硫酸氢钾的氧化效率最高,且过硫酸氢钾投放量为理论投放量的1.3倍时,可以有效去除水体中难去除有机物,使水体COD含量从120mg/L降至20.5mg/L,去除率为82.35%。最终,采用Fenton试剂与过硫酸氢钾氧化联合对舱底水进行净化处理,COD的去除率达97.82%,氧化后出水COD含量达到国家排放标准。  相似文献   

4.
芬顿试剂、高锰酸钾对餐饮业废水的预氧化效果研究   总被引:2,自引:0,他引:2  
以芬顿试剂、高锰酸钾为氧化剂氧化降解餐饮业废水,通过测定COD、BOD5变化来比较氧化效果。在单因素实验的基础上,采用正交实验研究。芬顿试剂的最佳氧化条件是:FeSO4·7H2O投加量为3mmol/L,pH=3,H2O2/Fe^2+比为3:1,反应时间为120min。高锰酸钾的最佳氧化条件为投加量10mL/L,pH=2,反应时间为60min。研究表明:与高锰酸钾处理的效果相比,采用芬顿试剂,COD去除率可达80%,处理后废水的可生化性大大提高,为进一步的生化处理创造了良好的条件。  相似文献   

5.
以生化+气浮处理后的烟草薄片废水为研究对象,对废水进行芬顿实验,考察了反应时间、pH、硫酸亚铁及双氧水投加量对COD去除率的影响。研究表明,在双氧水投加量为0.91ml/L,硫酸亚铁投加量为0.5g/L,反应时间1.5h时,芬顿的处理效果较经济。此时COD去除率为73.3%,出水COD为80mg/L。  相似文献   

6.
探讨了Fenton氧化法在处理煤化工污水过程中H2O2投加量、Fe2+投加量、pH等因素对煤化工污水中COD、挥发酚去除率的影响。确定了最佳处理条件,结果表明:Fenton氧化法处理煤化工废水具有良好的效果,COD、挥发酚的去除率分别达到83%,99%。实验结果为实际工艺处理煤化工污水提供了实验依据。  相似文献   

7.
采用石灰软化法处理硬度较大、碱度较低的反渗透浓盐水,研究不同的氢氧化钙单独投加量,氢氧化钙和碳酸钠的混合投加量对反渗透浓盐水的硬度、钙离子、碱度的去除率及对其电导率的影响。试验结果表明,综合去除效果和投加成本,当氢氧化钙和碳酸钠同时投加,投加量分别为500 mg/L和650 mg/L时,硬度的去除率可达55.8%,同时钙离子的去除率可达88.3%,且对电导率影响不大。  相似文献   

8.
H2O2-Fe2+法处理精喹禾灵生产废水的研究   总被引:1,自引:0,他引:1  
采用酸析法先对精喹禾灵生产废水进行预处理然后用H_2O_2-Fe_~(2 )法进行催化氧化,研究了H_2O_2投加量及投加方式、Fe~(2 )投加量、反应时间对处理效果的影响。结果表明,在H_2O_2投加量为12g/L,分批投加,Fe~(2 )投加量为300mg/L,反应时间为90min、pH=2~4的条件下,氧化,出水经活性炭吸附后废水的COD和色度的去除率分别可达94.5%和96.7%,用石灰乳中和后可直接排放,达到了国家二级排放标准(GB8978-1996)。  相似文献   

9.
采用铁碳微电解-Fenton氧化联合工艺处理甲苯硝化废水,探讨了溶液pH值、铁炭投加量、铁炭比例、H2O2投加量和反应时间等因素对微电解-Fenton氧化处理硝化废水的影响规律,获得微电解-Fenton氧化处理硝化废水的最佳工艺条件:废水pH在3左右,铁炭投加量为0.6 g/L,Fe/C质量比为4∶1,反应时间为1.5h,微电解后H2O2投加量为20 ml/L,反应时间为1 h。硝化废水经微电解-Fenton氧化处理后,COD由29 146mg/L降至6 477 mg/L,COD去除率达77.8%,BOD5/COD由0提高到0.37左右,废水可生化性显著增强。  相似文献   

10.
以实际阿特拉津含盐废水为处理对象,采用芬顿法对其进行预处理。通过正交试验和单因素试验研究了芬顿氧化体系中H_2O_2用量、H_2O_2和Fe~(2+)的比值、pH值、温度和反应时间对阿特拉津含盐废水COD去除率的影响。结果表明:在H_2O_2用量为4.44 mg/L,ρ(H_2O_2)/ρ(Fe2+)=20∶1,pH=5,温度为60℃,反应时间在120 min的条件下,阿特拉津实际废水COD的去除率可达90.5%。  相似文献   

11.
研究沉淀-Fenton氧化对甲基硫菌灵生产废水的预处理,考察SCN^-和CODcr的去除效果。先加入Cu-SO4和Na2S2O3对SCN^-进行沉淀,考察CuSO4和Na2S2O3加入量对CODcr去除率的影响;对沉淀后水样进行Fenton氧化,通过改变pH值、H2O2浓度、Fe^2+浓度、反应时间等得出该农药废水在常温下的最佳操作条件。实验结果表明,经过沉淀处理后的废水,pH值为4、H2O2投加量为6~7 g/L、Fe^2+投加量为1.2~1.5 g/L,氧化时间为2~4 h,CODcr浓度从12 000 mg/L降至3 600 mg/L,总去除率达到了70%。  相似文献   

12.
臭氧氧化反渗透浓缩垃圾渗滤液动力学   总被引:5,自引:2,他引:3  
郑可  周少奇  沙爽  杨梅梅 《环境科学》2011,32(10):2966-2970
采用臭氧氧化法处理经反渗透膜处理后的浓缩垃圾渗滤液,并建立了氧化降解反应动力学模型.结果表明,氧化降解初始反应速率主要与初始pH、臭氧投量、反应温度和初始COD有关.在pH 8.0,温度30℃,臭氧投量5.02 g/h,反应时间90 min的条件下,反渗透浓缩渗滤液的COD去除率达到67.6%;并且在pH为2.0~8....  相似文献   

13.
采用混凝-Fenton氧化联合处理玉米淀粉废水,确定最佳的混凝和氧化条件。试验结果表明:混凝一阶段中,确定PAC为最优混凝剂,最佳投加量为10 mL/L,PAC和助凝剂PAM投加量配比为2∶2,pH=7,温度为35℃时COD去除率最高;Fenton氧化阶段中,Fe2+/H2O2为2∶5时,COD去除率最高;在混凝二阶段中,PAC和PAM投加量均为70 mL/L时,COD去除效果最好。该处理方法有良好的处理效果,有效降低废水的COD、SS和色度,出水达到排放标准,最后产生的SS可以作为淀粉蛋白回收,为后续产品生产所利用,提高经济效益并具有设备简单、占地面积小、去除率高、操作方便、不产生二次污染物等优点。  相似文献   

14.
催化臭氧氧化预处理垃圾渗滤液   总被引:2,自引:0,他引:2  
采用浸渍法制备载铜活性炭催化剂,系统地研究了催化氧化法对垃圾渗滤液中的COD和氨氮去除效果,对臭氧氧化和催化臭氧氧化效率进行了对比。在该方法下制备的催化剂中,活性组分金属铜的含量为2.89%。结果表明:在投加催化剂的情况下,COD的去除效率可得到显著提高。实验结果表明:处理COD为4980mg/L,氨氮为2100mg/L的垃圾渗滤液废水,在室温、pH为3、反应时间为120min、催化剂投加量为150g/L、臭氧的流量为5.2mg/min的条件下,废水中的COD及氨氮的去除率分别达到达81.9%和99.04%。  相似文献   

15.
采用Fenton试剂絮凝氧化法预处理皂素废水,考察了H2O2投加量、FeSO4·7H2O投加量、pH值和搅拌时间4个因素,研究其对废水中COD去除效果的影响,实验结果表明反应的最佳条件为:pH为4,H2O2投加量为18mL/L,FeSO4·7H2O投加量为7g/L,搅拌时间为45min,对COD的去除率可达到42.60%。  相似文献   

16.
采用O3催化氧化法深度处理兰炭废水,提出了兰炭废水达标排放的新处理方法。以铜为活性组分,氧化铝为载体采用浸渍法制备CuO/γ-Al2O3催化剂,并采用XRD对其进行表征,利用催化剂结合O3催化氧化法去除兰炭废水中经生化处理后残留的污染物。设计了催化氧化试验装置,考察了催化剂投加量、反应时间、O3用量以及pH等因素对处理效果的影响。实验结果表明,pH在酸性条件下有利于COD去除率的提高,O3用量提高有助于COD去除率的提高,将催化剂用量和反应时间控制在一定范围内有利于污染物的去除;最佳条件下催化剂投加量300 g,反应时间1 h,O3用量0.08 m3/h,pH为7左右时COD去除率可达到95%左右。另外,催化剂在20次反应过程中表现出较高的催化活性及较强的稳定性。  相似文献   

17.
制药废水中含有大量难生物降解的化学物质,其BOD5/COD值很低,可生化性差。故一般仅采用生化处理很难将其COD降低到排放标准,现采用铁碳微电解法并串联Fenton工艺对某制药厂废水进行预处理。以废水COD为指标并通过正交试验确定达到最佳处理效果的各因素的最佳组合条件为:前端的铁碳微电解反应时间为2.5 h,pH值为5,铁碳质量比1:2,Fe粉的投加量为120 g/L;后续Fenton反应投加30%H2O23 mL/L,FeSO.47H2O(100 g/L)400 mg/L,调节pH值为2,反应时间2.5 h,总去除率大于70%,为工业化应用做出铺垫。  相似文献   

18.
油田作业废水臭氧化处理技术的实验研究   总被引:5,自引:0,他引:5  
针对油田作业废水(COD)高、难降解的特点,探讨了废水的pH、COD初始浓度、臭氧投加量和臭氧化时间等因素对油田作业废水的COD去除效果的影响。结果表明,臭氧化对油田作业废水COD去除效果影响的主要因素为废水pH、废水的COD和臭氧投加量;当废水的COD为1064.0mg/L、pH为3.0、臭氧投加量为10g/L时,废水的COD去除率达到69.1%;臭氧化处理对低浓度油田作业废水的COD去除效果低于其对高浓度废水的处理效果。  相似文献   

19.
应用零价铁法处理木竹制浆造纸含氯漂白工段产生的中段废水。考察了反应时间、pH值、零价铁投加量等因素的影响。结果表明,铁粒投加量、反应时间和实验水样初始pH值对水样中AOX和COD有明显影响,当铁粒投加量为100 g/L、反应时间为4 h、初始pH值为3.0时,AOX去除率可达65.3%,COD去除率可达53.6%。  相似文献   

20.
王昶  张宗鹏  曾明 《环境工程》2015,33(12):49-53
采用均相Fenton高级氧化技术对苯甲酸废水进行降解,考察了p H值、H2O2投加量、Fe~(2+)的用量、苯甲酸溶液的初始浓度等因素对苯甲酸降解的影响。结果表明:在室温条件下,最佳初始pH=3,H_2O_2最佳的经济投加量(Qth)为12.3 mmol/L,Fe~(2+)最佳投加量为0.41 mmol/L(即c(H_2O_2)∶c(Fe~(2+))=30∶1);经60 min反应后,100 mg/L苯甲酸基本可完全去除,TOC去除率也可达41.9%以上;当苯甲酸浓度为200 mg/L时,TOC去除率最大,可达45.4%;当苯甲酸浓度高于200 mg/L时,可以采取分批投加H_2O_2的方式以获得较高的去除率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号