首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
水体系中Fe(II)/S2O82--S2O3 2-降解敌草隆的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在初始pH 值为7.0 的水体系中,通过正交实验确定了Fe(II)/S2O82--S2O32-降解敌草隆的最佳操作条件:Na2S2O8 浓度2.0mmol/L, Fe(II)浓度1.0mmol/L,Na2S2O3 浓度0.5mmol/L,反应时间120min.在此条件下0.1mmol/L 敌草隆降解率达到91.3%.利用乙醇和叔丁醇作为分子探针,采用分子探针法的竞争实验鉴定了体系中产生的SO4-· 和 ·OH  相似文献   

2.
研究了泥水体系中柠檬酸-Fe(Ⅱ)/K2SO8降解敌草隆时各影响因子的作用机制,通过正交实验确定了反应的最佳操作条件为:K2SO8浓度为2.0mmol/L,Fe(Ⅱ)浓度为1.0mmol/L,柠檬酸浓度为0.5mmol/L,反应时间为120min,pH=7.0。此奈件下,0.1mmol/L敌草隆降解率可达97.6%。采用分子探针竞争实验鉴定了体系中产生的硫酸根自由基。  相似文献   

3.
本研究采用O3/UV工艺降解喹啉溶液,系统地探讨了喹啉初始浓度、反应后置时间、初始p H、HCO-3浓度等因素对降解过程的影响.通过测定降解过程中的中间产物,分析了喹啉的降解机制及途径.结果表明随着喹啉初始浓度增加,反应表观速率常数和去除率都降低;p H(7~9)碱性条件时降解效果最好;HCO-3的存在明显降低了喹啉的去除率,加入100 mg·L-1HCO-3喹啉去除率降低了42.01%;反应后置时间对喹啉的去除率及矿化率基本没有影响.喹啉的降解中间产物主要为8-羟基喹啉、5-羟基喹啉、2(1H)-喹啉酮、2-吡啶甲醛等,喹啉在O3/UV体系中的降解途径主要由羟基自由基(·OH)、O3氧化剂发生的加成反应、取代反应、亲电反应等.  相似文献   

4.
Fe2+S2O82-EDTA体系中自由基离子对啶虫脒的氧化降解   总被引:1,自引:0,他引:1  
为探讨水环境中自由基离子对啶虫脒的共降解作用,研究了Fe2+S2O82-EDTA体系中啶虫脒降解的可行性,以及在Fe2+S2O82-EDTA体系中3种组分最佳配比条件下自由基离子和底物浓度对啶虫脒降解率的影响.结果表明,在Fe2+S2O82-EDTA体系下反应360 min后啶虫脒的降解率达到58.25%,c(Fe2+)、c(S2O82-)和c(EDTA)对Fe2+S2O82-EDTA体系的氧化能力均有较大的影响.通过中心复合试验对Fe2+S2O82-EDTA体系中3种离子的最佳配比进行优化,c(EDTA)、c(Fe2+)、c(S2O82-)分别为1.61、3.46、7.99 mmolL.Fe2+S2O82-EDTA体系中·SO4-和·OH等自由基离子的存在是引起啶虫脒降解的主要原因,中性条件最有利于自由基离子的产生并提高啶虫脒高的降解率.然而该体系中自由基离子的量是一定的,过高的c(啶虫脒)(200μmolL)对降解率有明显抑制.  相似文献   

5.
碳纳米管负载纳米四氧化三铁多相类芬顿降解亚甲基蓝   总被引:5,自引:3,他引:2  
在课题组前期研究的基础上,以碳纳米管(MWCNTs)为载体制备了Fe3O4/MWCNTs复合物并作为催化剂,以染料亚甲基蓝(MB)为降解对象,研究了该催化剂催化H2O2对亚甲基蓝溶液的降解特性及其影响因素,并考察了催化剂的重复使用效果,探讨了催化反应的机理.结果表明,在pH值3~8的范围内,催化反应体系都能有效降解MB,最佳pH值为3.5.随着催化剂投量的增加,MB的降解率明显提高,500 mg·L-1催化剂投量条件下,MB的降解率最高.随着H2O2初始浓度的增加,MB的降解率增加,10 mmol·L-1时MB的降解率最高.溶液中共存的阴离子会降低MB的降解率.在最佳条件,即温度25℃、H2O2浓度10 mmol·L-1、催化剂浓度500 mg·L-1的条件下,0.20 mmol·L-1MB在30 min内的降解率达到99.1%.催化剂重复使用后仍然具有较好的催化活性,说明Fe3O4在MWCNTs表面负载比较牢固,催化剂具有反复使用的能力.催化反应机理是催化剂催化H2O2产生羟基自由基,高活性的羟基自由基氧化MB.  相似文献   

6.
降解偶氮染料AO7的研究:动力学及反应途径   总被引:4,自引:3,他引:1  
紫外光分解过硫酸盐(S2O2-8)是一种新型的高级氧化技术,可以产生强氧化性的硫酸根自由基(SO-4).以偶氮染料AO7为目标污染物,重点研究了反应体系氧化剂K2S2O8浓度、溶液初始pH值和无机阴离子(H2PO-4、HCO-3、NO-3和Cl-)对反应体系的影响.结果表明,AO7的降解遵循准一级动力学,当AO7初始浓度为0.14 mmol/L时,最佳的氧化剂K2S2O8与污染物AO7的摩尔比为20.pH值对UV/K2S2O8体系降解AO7的反应速率影响较大,增大pH有利于SO-4转化为·OH.溶液中的无机离子对反应体系有一定的抑制作用.采用GC/MS分析了UV/K2S2O8体系降解AO7的主要中间产物(萘酚、1,2-苯并吡喃酮、邻苯二甲酸),并根据中间产物的分析推测了降解途径.  相似文献   

7.
紫外光分解过硫酸盐(S2O28-)是一种新型的高级氧化技术,可以产生强氧化性的硫酸根自由基(SO·4-).以偶氮染料AO7为目标污染物,重点研究了反应体系氧化剂K2S2O8浓度、溶液初始pH值和无机阴离子(H2PO4-、HCO3-、NO3-和Cl-)对反应体系的影响.结果表明,AO7的降解遵循准一级动力学,当AO7初始浓度为0.14mmol/L时,最佳的氧化剂K2S2O8与污染物AO7的摩尔比为20.pH值对UV/K2S2O8体系降解AO7的反应速率影响较大,增大pH有利于SO·4-转化为·OH.溶液中的无机离子对反应体系有一定的抑制作用.采用GC/MS分析了UV/K2S2O8体系降解AO7的主要中间产物(萘酚、1,2-苯并吡喃酮、邻苯二甲酸),并根据中间产物的分析推测了降解途径.  相似文献   

8.
UVA紫外辐射下H2O2/KI降解水中磺胺嘧啶   总被引:1,自引:0,他引:1  
研究了UVA(λ=365 nm)紫外辐射下碘与过氧化氢共存对水中磺胺嘧啶的降解.同时,考察了溶液初始p H值、H_2O_2和KI添加浓度等对UVA/H_2O_2/KI体系降解磺胺嘧啶的影响,并对体系中的主要活性物质进行了分析.结果表明,UVA/H_2O_2/KI体系对磺胺嘧啶的降解作用显著.初始p H值的影响较大.作为体系中碘及其自由基产生的关键因子,一定范围内,H_2O_2、KI的添加浓度增加,磺胺嘧啶的去除率增加,且存在适宜添加浓度,分别为120 mmol·L~(-1)和2.4 mmol·L~(-1).甲醇和甲硫咪唑的抑制实验结果表明,碘自由基为UVA/H_2O_2/KI体系降解磺胺嘧啶的主要活性物质.HPLC谱图显示,磺胺嘧啶在降解过程中主要有3种产物生成,其中之一可能为磺胺.  相似文献   

9.
孙鹏  张凯凯  张玉  张延荣 《环境科学》2020,41(5):2301-2309
二价铁离子活化过硫酸盐(PS)产生自由基可降解有机污染物,但体系中Fe(Ⅲ)/Fe(Ⅱ)循环速率较慢,成为制约降解效率的关键因素之一.为提高反应体系效率,制备向日葵秸秆生物炭(SFBC),以苯甲酸(BA)为目标污染物,探究SFBC强化Fe(Ⅲ)/S_2O~(2-)_8体系降解BA的效果.SFBC表征结果说明其具有孔隙结构,由无定形炭组成,表面有丰富的官能团及持久性自由基(PFRs).考察了反应条件(pH、PS浓度和SFBC投加量)对降解的影响,结果表明,SFBC/Fe(Ⅲ)/S_2O~(2-)_8体系对BA降解效率明显高于Fe(Ⅲ)/S_2O~(2-)_8及SFBC体系,在SFBC=2.0 g·L~(-1)、BA=10.0mg·L~(-1)、PS=2.0mmol·L~(-1)、Fe(Ⅲ)=1.0mmol·L~(-1)和pH=3.0条件下, 90 min时BA降解率达100.00%;自由基猝灭实验及电子顺磁共振光谱(EPR)实验表明,SO~-_4·和·OH共同参与BA降解并以SO~-_4·为主导;循环实验及实际水体影响说明SFBC具有较好地循环稳定性及实际应用性.机制分析阐明PFRs和—OH给出电子还原Fe(Ⅲ)生成Fe(Ⅱ),进而由Fe(Ⅱ)活化PS高效降解BA.  相似文献   

10.
尹鹏  陈海  杨慧  杨琦 《环境科学学报》2018,38(2):467-474
采用浸渍法成功合成了新型催化剂纳米Fe3O4/CeO_2,并且用Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE进行降解研究,考察了初始pH、H_2O_2浓度、温度及催化剂投加量等因素对于TCE降解效率的影响.实验结果表明,Fe3O4/CeO_2-H_2O_2非均相Fenton体系对TCE具有较好的去除效果:在初始pH=3,温度50℃,H_2O_2浓度30 mmol·L-1和Fe3O4/CeO_2投加量0.5 mg·L-1时,TCE去除率高达97.29%.同时实验结果表明pH在2~7范围内对TCE均有降解效果,所以相对于传统Fenton体系,该体系拥有更宽pH应用范围.目标污染物的降解符合一级动力学,反应活化能为30.77 k J·mol-1,表明反应易于进行.  相似文献   

11.
Fenton试剂氧化降解腐殖酸动力学   总被引:8,自引:4,他引:4  
研究了Fenton试剂氧化降解腐殖酸废水的过程及动力学.结果表明,Fenton法能通过氧化和混凝作用有效去除腐殖酸,其中氧化降解速率主要与Fenton试剂投量、腐殖酸初始浓度和初始pH值有关,且氧化作用主要发生在反应前60 min.在pH为4.0,[Fe2+]0为5~40 mmol.L-1,[H2O2]0为40~120 mmol.L-1,[HS]0为250~1 000 mg.L-1,温度为278~318 K的实验范围内,反应初始阶段腐殖酸的氧化降解符合表观反应动力学模型.模型值与实验值吻合良好,说明该反应动力学模型能较好地描述Fenton氧化降解腐殖酸过程.Fenton氧化降解腐殖酸的初始反应活化能Ea为14.9 kJ.mol-1,说明反应较易进行.动力学模型的反应总级数为2.34,其中H2O2的反应分级数(0.86)高于Fe2+的分级数(0.47),表明H2O2浓度比Fe2+浓度对Fenton氧化降解反应的影响大.  相似文献   

12.
采用高级氧化技术,以Co2+为催化剂分解单过氧硫酸氢钾(PMS)所产生的强氧化性硫酸根自由基(SO4·-)降解水中的二氯喹啉酸(QC).考察了PMS用量、Co(Ⅱ)/PMS比值和Cl-浓度以及QC初始浓度对该均相Co(Ⅱ)/PMS体系降解QC的影响.结果表明,QC的降解遵循准一级动力学过程.当QC初始浓度在0.02~0.2mmol/L时,QC的降解速率随着QC/PMS比值的降低而增大,但当QC/PMS比值小于1/100时,则相反.QC的降解速率随着PMS浓度升高而线性增大,当PMS浓度为32mmol/L时,4h内QC的降解率可达94%.增大Co(Ⅱ)/PMS的摩尔比能够促进QC的降解,而Cl-对QC的降解有一定的抑制作用.LC/MS分析结果表明,3,7-二氯-8-羟基喹啉和7-氯-8-喹啉甲醛为QC降解过程中两种主要的中间产物.  相似文献   

13.
过渡金属催化过硫酸盐(PS)产生活性氧自由基(ROS)可有效降解有机污染物.为避免均相催化过程中过渡金属带来的二次污染,将磺化酞菁钴(CoPcS)键合固定于壳聚糖(CS)微球载体上,制备出一种结构稳定、较高催化活性的催化剂(CS-CoPcS),并以偶氮染料甲基橙(MO)为目标污染物,考察不同反应条件对MO降解过程的影响,进而分析了催化剂的稳定性和降解机理.结果表明:CS-CoPcS催化PS可有效降解MO,当反应温度为25℃,MO初始浓度为152.75μmol/L,pH0为5.5,PS的投加浓度为10mmol/L,CS-CoPcS投加量为1.25g/L,MO在180min的降解率可达87.21%,降解速率为1.24×10-2min-1,符合准一级动力学方程;电子自旋共振(EPR)和淬灭实验均证实催化过程产生以硫酸根自由基为主的有效ROS;4次循环利用实验中未能检测出溶液中潜在浸出的钴离子,CS-CoPcS表现出很好的催化活性和结构稳定性.  相似文献   

14.
采用共沉淀法制备了铁锰双金属复合催化剂(MnFe2O4),用于活化过一硫酸盐(PMS)产生强氧化性的硫酸根自由基(SO4-·)氧化降解水中阴离子表面活性剂(LAS).采用傅立叶变换红外光谱仪(FTIR)、X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)对催化剂进行表征,表明成功合成了具有尖晶石结构的MnFe2O4催化剂.考察了催化剂投加量、PMS投加量以及初始pH值等各种因素条件对LAS的降解效率以及反应动力学的影响.实验结果表明,MnFe2O4活化PMS降解LAS的过程符合准一级动力学(R2>0.9).在LAS初始浓度为80mg/L,催化剂投加量为2.0g/L,PMS的浓度为2.5mmol/L,初始pH值为7.0,反应时间为30min的情况下,LAS降解效率达到94.1%,此时LAS的降解速率常数达到0.192min-1.通过自由基猝灭实验证明了MnFe2O4/PMS体系中起主要氧化降解作用的活性自由基为SO4-·.通过反应前后催化剂的X射线光电子能谱(XPS),证实Fe和Mn之间存在协同作用,提高了MnFe2O4对PMS的活化效率.  相似文献   

15.
为探索硫酸根自由基对偶氮染料的降解能力,以直接耐酸大红4BS(下称大红4BS)为模拟污染物,通过UV/Fe(Ⅱ)-EDTA/PDS(PDS为过硫酸钠)体系,探讨了初始c(PDS)、Fe(Ⅱ)/EDTA(摩尔比)、无机盐阴离子等对大红4BS降解的影响.结果表明,大红4BS的脱色率随着初始c(PDS)的增加而增大,当c(PDS)超过15 mmol/L时无显著变化.Fe(Ⅱ)/EDTA比在5:1时效果最好,5 min时使0.038 0 mmol/L大红4BS的脱色率达到93.6%.反应符合二级动力学模型.HCO3-、Cl-、NO3-、SO42-等无机盐阴离子表现出明显抑制作用,c(无机盐阴离子)在100 mmol/L条件下,脱色率分别降低66.9%、13.2%、12.1%、9.43%.利用紫外可见光谱,依据其结构与特征吸收的关系,初步推测自由基离子对大红4BS降解的途径:苯环最先遭到破坏,随后偶氮键断裂、萘环开裂.研究显示,UV光可有效强化Fe(Ⅱ)-EDTA活化过硫酸盐形成SO4-·自由基,对偶氮染料具有很好的脱色能力,最佳反应条件[PDS:Fe(Ⅱ):EDTA(摩尔比)为15:5:1]下,大红4BS在10 min时脱色率高达98.1%.   相似文献   

16.
研究了线筒式介质阻挡放电等离子体对水中敌草隆的降解效果,考察了不同因素对敌草隆去除效果的影响及其对敌草隆的降解机理. 结果表明:输入功率、空气流量均对敌草隆的降解产生较大影响. 输入功率为50 W、空气流量为140 L/h时,放电反应6 min敌草隆的去除率达到95.7%. 随着放电时间的增加,水溶液中测出的ρ(O3)、ρ(H2O2)均明显升高,6 min后其产量分别为11.9和1.2 mg/L;放电6 min后pH从最初的6.3降至3.4,ρ(TOC)也从最初的14.2 mg/L降至11.9 mg/L. 采用离子色谱仪分析敌草隆降解过程中产生的离子发现,反应过程中ρ(Cl-)和ρ(NO3-)呈线性增长. 采用发光细菌抑制率反映溶液毒性,放电6 min后,敌草隆溶液对发光细菌的抑制率高达90.5%,溶液毒性增大. 通过液相色谱-飞行时间质谱对敌草隆降解产物进行分析,敌草隆降解过程中中间产物的形成存在烷基氧化、脱氯羟化、脱氯羟化-烷基氧化3种途径.   相似文献   

17.
蜂窝陶瓷催化臭氧化降解水中痕量硝基苯的机理研究   总被引:4,自引:4,他引:0  
实验考察了HCO3-、CO32-、HPO42-、H2PO4-和叔丁醇等羟基自由基抑制剂存在条件下,单独臭氧氧化和臭氧/蜂窝陶瓷氧化对水中硝基苯降解效果的影响规律,初步推测了反应机理.结果表明,2种工艺对硝基苯的去除率都随着HCO3-浓度的增加(0~200 mg·L-1)先增高再降低,在浓度为50 mg·L-1时去除率达到最大值;单独臭氧氧化和臭氧/蜂窝陶瓷对硝基苯的去除率随着CO32-浓度的增加(0~20 mg·L-1)分别降低了16.57%和27.52%,随着HPO42-浓度的增加(0~12 mg·L-1)分别降低了13.61%和17.52%,随着H2PO4-浓度的增加(0~120 mg·L-1)分别降低了6.61%和12.52%,随着叔丁醇浓度的增加(0~10mg·L-1)硝基苯去除率降低了30.06%和46.09%.证明单独臭氧氧化和臭氧/蜂窝陶瓷氧化对硝基苯的降解遵循·OH氧化机理,叔丁醇更适合作为自由基抑制剂用来推断单独臭氧氧化和臭氧/蜂窝陶瓷氧化降解硝基苯的反应机理.单独臭氧氧化对硝基苯的去除率随着pH值的升高(3.02~10.96)而增大,臭氧/蜂窝陶瓷氧化对硝基苯的去除率在pH=9.23时达到最大值.  相似文献   

18.
采用零价铁(Fe~0)与过硫酸盐构建异相类芬顿体系,由Fe0腐蚀释放Fe~(2+)催化S_2 O_8~(2-)产生硫酸根自由基快速降解偶氮染料活性艳橙,考察了初始p H值、Fe~0投加量、过硫酸盐投加量和温度对降解过程的影响。结果表明,当活性艳橙初始浓度为100 mg/L、pH值为7、Fe~0投加量为0.5 g/L、过硫酸盐投加量为1 mmol/L和反应温度为30℃时,反应60 min后活性艳橙降解率达到92.6%。酸性条件和提高反应温度均有利反应的进行,而且活性艳橙的降解率在初始pH值为9时也高于90%。反应过程符合准一级动力学,表观反应速率常数k为0.0513 min~(-1)(30℃)。UV-Vis扫描显示,活性艳橙的发色基团在反应过程中被破坏。由Fe~0与S_2O_8~(2-)构成的异相Fenton体系可作为一种高效手段用于染料废水的处理。  相似文献   

19.
采用新型磁性催化材料尖晶石型铁酸铜(CuFe2O4)活化过硫酸盐(PMS)降解氧杂蒽类染料罗丹明B(RhB),考察PMS浓度、CuFe2O4投加量、pH值和水中常见离子对RhB降解的影响.结果表明,当RhB、PMS、CuFe2O4初始浓度分别为5 μmol/L、0.1mmol/L、0.1g/L时,在中性条件下反应30min后RhB去除率可达88.87%.其中,Cl-和HCO3-对RhB的降解无显著影响,而H2PO42-、C2O42-及腐殖酸明显抑制RhB的降解.自由基鉴定实验表明,在中性及弱碱性条件下SO4-和·OH是CuFe2O4/PMS体系降解RhB的主要自由基.研究发现随着RhB的降解,溶液逐渐褪色并伴随着甲酸根、乙酸根、草酸根和铵根离子的生成,原因在于SO4-和·OH可以破坏RhB分子的发色基团,使苯环开环和氮原子脱落,形成相应的降解产物.矿化实验表明0.2mmol/L的RhB在CuFe2O4/PMS体系中反应10h后,矿化率可达62%.催化剂的重复利用实验表明制备的CuFe2O4具有良好回收再利用能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号