首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解析代谢解偶联剂的污泥减量性能及机理,选用毒副作用较低的代谢解偶联剂四氯水杨酰苯胺(TCS),考察其对序批式活性污泥反应器(SBR)长期运行过程中污泥产量及运行参数的影响。结果表明,投加一定量的TCS具有较好的污泥减量化作用,添加TCS前和停用后,SBR内各指标变化均不明显,说明TCS对SBR运行没有明显影响。当SBR中污泥混合液悬浮固体(MLSS)为2 200mg/L,TCS添加量为1.6mg/L时,平均污泥产率系数由0.521mg/mg降至0.314mg/mg,污泥产量减少39.73%。TCS对有机物的去除基本没有影响,COD去除率仅下降3.03百分点,但比耗氧速率(SOUR)增加73.73%,比三磷酸腺苷(SATP)合成量减少23.90%,胞内贮存物(PHAs)含量平均增加42.28%,脱氧核糖核酸(DNA)含量无明显变化。因此,适量添加TCS不会造成细胞溶胞,但能使胞内代谢增加,使氧化磷酸化解偶联,使生物合成量减少,从而实现污泥减量化。  相似文献   

2.
高效代谢解偶联剂的筛选及对SBR系统综合运行效能的影响   总被引:4,自引:0,他引:4  
活性污泥法是最常用的污水处理技术,但它同时会产生大量的剩余污泥,需要进行额外的处理和处置.活性污泥的解偶联代谢能有效地减少剩余污泥的产量.比较了5种代谢解偶联剂,即2,4-二硝基苯酚(DNP)、邻氨基苯酚(AP)、2,4,6-三氯苯酚(TCP)、3,3',4,5-四氯水杨酰苯胺(TCS)、丙二酸的污泥减量效果和对COD去除能力的影响.结果表明,当它们在各自的最佳质量浓度20、1 5、4、1.2、15 mg/L时,污泥的表观增长系数分别降低了62.39%、63.75%、59.40%、34.58%和53.75%,而COD去除率仅有轻微下降.重点研究了15 mg/L的丙二酸和4 mg/L的TCP对SBR系统运行效能和污泥沉降性能的影响.发现在长期运行过程中,两者都能有效降低系统的污泥产量,而对COD去除率的影响较低,但使用丙二酸6 d后极大地影响了污泥的沉降性能,而TCP对污泥的沉降性能影响很小.  相似文献   

3.
采用超声波处理序批式间歇反应器(SBR)中的活性污泥,通过改变活性污泥的超声波处理比例,分析SBR系统的污泥降解特性和减量效率。研究结果表明,超声波处理能有效促进系统污泥减量和污泥稳定,30%的处理比例使污泥表观产率和挥发性悬浮固体/悬浮固体(VSS/SS)较对照处理分别减少28%和5.1%,但处理系统出水水质轻微下降,30%和40%的处理比例使系统出水COD去除率较对照处理分别下降了9.5%和12.3%,出水浊度也出现了轻微增加,而污泥的沉降性能并没有产生明显影响。  相似文献   

4.
好氧反硝化菌强化序批式活性污泥反应器处理生活污水   总被引:2,自引:0,他引:2  
研究了好氧反硝化菌强化序批式活性污泥反应器(SBR1)处理生活污水的性能,同时以只接种相同量普通活性污泥的序批式活性污泥反应器(SBR2)作为对照组。结果表明:(1)反应前21天启动期间,SBR1对污水COD、NH+4-N和TN的平均去除率分别可达到77.79%、94.96%、63.21%,对COD和TN的平均去除率明显好于SBR2。(2)当C/N为4∶1(质量比,下同)和6∶1时,SBR1对COD和TN的去除率明显高于SBR2;当C/N为8∶1时,SBR1对COD和TN的去除效果达到最好,对两者的平均去除率分别达到85.31%和61.14%;当C/N为10∶1和12∶1时,两反应器对废水COD去除效果的差距缩小,但SBR1对TN的平均去除率分别为58.98%和51.64%,明显高于SBR2。(3)SBR1投加的好氧反硝化菌适应较低的C/N环境,且能在生活污水中快速增殖,保持了很好的污泥悬浮液浓度和沉降性能,在35d形成成熟的颗粒污泥。  相似文献   

5.
在序批式反应器(SBR)中添加ZH组合填料构成序批式生物膜反应器(SBBR),并以SBR为对比,研究了2种工艺对污染河水中硝酸盐氮的去除效果。结果表明,(1)进水硝酸盐氮浓度分别为15、20和30 mg/L时,2种工艺对COD的去除率均大于90%,对COD的去除能力均较强,进水硝酸盐氮的增加对COD的去除效果影响不大;第1个缺氧段是COD的主要去除段,此阶段COD的去除率达到80%以上。(2)随进水硝酸盐氮浓度的增加,SBBR中NO-3-N和TN的去除率分别从99.73%和99.24%降至79.75%和65.56%;SBR中NO-3-N和TN的去除率分别从99.91%和99.51%降至55.57%和41.73%。(3)随进水硝酸盐氮浓度的提高,两反应器内亚硝酸盐氮的积累量增大;进水硝酸盐氮浓度为15、20和30 mg/L时,SBBR中的亚硝酸盐氮最大积累浓度分别为2.90、6.82和10.72 mg/L;SBR中亚硝酸盐氮最大积累浓度分别为4.35、9.47和11.89 mg/L。SBBR中亚硝酸盐氮的积累明显低于SBR。  相似文献   

6.
研究了新型工艺——侧流式旁路微氧污泥减量工艺在不同微氧污泥停留时间下的污泥减量效果,监测了COD去除率、污泥产率和污泥性能的变化,并探索了微氧污泥回流后曝气池内兼性菌溶胞过程。结果表明,新工艺COD去除率高于传统工艺,但随停留时间延长而降低,微氧污泥停留3 d时高达93.59%,11 d时降至89.25%;新工艺表观污泥产率(MLSS/COD)低于传统工艺,其降幅随停留时间延长而增大,停留时间由3 d延长到11 d,降幅由50.14%升到58.59%;回流后第4小时,曝气池内COD骤然上升,MLSS和MLVSS都大幅度增加,推断此时为曝气池内兼性菌大量溶胞时间点;新工艺SVI值低于传统工艺,MLVSS/MLSS值高于传统工艺,改善了污泥沉降性能,提高了污泥活性。综合考虑COD去除率和污泥产率等方面后,确定新工艺微氧池的最佳污泥停留时间为3 d。  相似文献   

7.
原位臭氧氧化污泥减量工艺的运行效能   总被引:1,自引:0,他引:1  
采用ASBR/SBR原位臭氧污泥减量工艺,重点研究了原位臭氧氧化对SBR段污泥产率和出水水质的影响。两个相同的ASBR/SBR组合工艺同时运行,每隔3个周期向臭氧投加组SBR的曝气阶段原位间歇投加臭氧,臭氧投加量为0.027 g O3/g MLSS,连续运行40 d;对照组不投加臭氧作为对比。结果表明,原位臭氧氧化实现污泥减量约43.9%,臭氧投加组SBR段平均污泥产率系数为0.1447 g SS/g SCOD,而对照组为0.2580 g SS/g SCOD,投加组没有惰性污泥的累积,并且污泥沉淀性能得到改善。原位臭氧氧化对出水水质影响不大,投加组与对照组相比,臭氧投加3周期后的出水COD、NH4+-N、TN和TP平均值分别为47.8、0.76、14.1和6.4 mg/L,去除率分别下降了4%、2%、3%和7.7%,其中COD、NH4+-N和TN均能达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。  相似文献   

8.
活性污泥法处理高钙废水中污泥特性的变化   总被引:3,自引:0,他引:3  
通过单级SBR法处理模拟高钙废水,研究了活性污泥法处理高钙废水的过程中钙离子对COD,MLVSS,MLSS,SVI,污泥增长速率,污泥形态结构及生物相的影响,揭示活性污泥法处理高钙废水的过程中污泥量巨大的原因。采用逐步增加钙离子浓度的方法,检测到在污泥培养期([Ca2+]=0 mg/L),COD去除率为98.1%,MLVSS和MLSS稳定在4 900~5 500mg/L,污泥增长速率为67 mg/(L·d),SVI为55~60 mL/g;在驯化处理期([Ca2+]=120~2 400 mg/L),COD去除率降至87.37%,MLVSS降至2 500 mg/L,MLSS增加至19 300 mg/L,污泥增长速率为212.31 mg/(L·d),SVI降至25 mL/g;在冲击期([Ca2+]=4 000 mg/L),COD去除率降至69.23%,MLVSS降至1 600 mg/L,MLSS迅速增加至24 200 mg/L,污泥增长速率为816.67 mg/(L·d),SVI降至14 mL/g。经显微镜观察发现,污泥絮体由松散变得密实,生物相由钟虫等指示性微生物变为不适应环境的胞囊结构。结果表明,随Ca2+浓度的增加,COD去除率下降,MLSS迅速增加,MLVSS和SVI急剧缩小,说明活性污泥中的活性微生物逐渐减少,而无机物组分逐渐增多;钙离子的加入促使系统碳酸平衡向右移动,使离子状态的钙大部分转化为难降解的碳酸盐,并附着于污泥絮体上,污泥绒粒被压缩,使污泥颗粒密实度及MLSS迅速增加,导致污泥排放量巨大。  相似文献   

9.
低曝气下PAC强化SBR工艺同步脱氮除磷   总被引:1,自引:0,他引:1  
采用序批式反应器(SBR)处理模拟生活污水,研究不同曝气量(30、24、18和12 L/h)下活性污泥同步脱氮除磷规律,并在最佳曝气量下,比较了粉末活性炭-序批式反应器(PAC-SBR)和SBR的脱氮除磷效率,分析了低曝气下PAC-SBR的运行特性和优越性。实验结果表明,当曝气量为24 L/h时,SBR内出水效果较好,其COD、TN和TP的平均去除率分别可以达到90.02%、81.13%和88.12%。在这个最佳曝气量下,PAC-SBR具有明显的优势,其COD、TN和TP的平均去除率均高于SBR,并且PAC-SBR具有较好的污泥沉降性能和较高的活性污泥浓度。在PAC-SBR中,活性污泥以PAC作为微生物载体强化了生物降解效果,并改善了低曝气下污泥絮体的结构,促使反应器内先后形成缺氧-厌氧-微氧/缺氧-缺氧的环境,利于同步硝化反硝化和反硝化聚磷,提高了PAC-SBR的同步脱氮除磷效率。  相似文献   

10.
针对传统污泥减量化工艺中氮磷难以达标的问题,以ASBR/SBR组合工艺为基础辅助臭氧氧化预处理,提出了臭氧耦合ASBR(anaerobic sequencing batch reactor)/SBR(sequencing batch reactor)工艺实现污泥减量与氮磷协同控制,系统评价了该工艺对污泥减量和脱氮除磷效果。结果表明,未投加臭氧时,SBR的污泥表观产率系数Yobs(即降解每克COD产生的悬浮固体的量)均值为0.228 g·g~(-1),投加臭氧(投量为0.074 g·g~(-1))后Yobs均值降低至0.132 g·g~(-1),降低了42%;臭氧投加前后出水COD、NH+4-N、TN和PO3-4-P去除率变化不大,分别在91%、95.2%、74.7%和49.4%左右;投加臭氧使得SOUR(specific oxygen uptake rate)(即每小时每克污泥所需氧气量)由2.8 mg·(g·h)~(-1)降低至2.4 mg·(g·h)~(-1),表明臭氧氧化并未明显抑制生物活性;此外,投加臭氧使得MLVSS/MLSS由0.85降低至0.83,表明实验过程中未发现惰性物质的累积。实验结果表明,臭氧耦合ASBR/SBR工艺在实现污泥减量和控制氮磷方面具有一定的工程应用价值。  相似文献   

11.
剩余污泥减量化工艺条件优化研究   总被引:2,自引:1,他引:1  
运用超声处理连续流活性污泥系统中不同种类的污泥,并将其回流至原系统中,研究其剩余污泥减量化效果。按正交实验设计并进行试验,确定最优工艺条件。结果表明:当声能密度为0.6 W/mL,作用时间为5 min,超声污泥为混合污泥,回流比为7∶120时,减量效果最佳。且在该条件下经一周期的运行,污泥减量效果达到96.24%,COD由进水的830 mg/L降至44 mg/L,NH4+-N和TN分别由进水的62.43 mg/L和103.19 mg/L,降解到2.31 mg/L和6.52 mg/L,达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级排放标准。  相似文献   

12.
在活性污泥系统采用超声波处理剩余污泥以考察污泥减量效果及其对系统处理效果的影响.结果表明:在声能密度0.25~0.50 W/mL范围内,经过1~30 min的超声波处理,系统表观产率显著下降,剩余污泥的产量可以减少20%~50%左右.同时发现,污泥的沉降性能指标SVI有所下降,而污泥的稳定性有所提高,活性污泥系统的出水水质略有不同程度的下降.  相似文献   

13.
朱毅  李晓霞  王俊  李春 《环境工程学报》2012,6(9):2995-3000
针对大豆深加工高浓度有机废水厌氧出水的特点,采用移动床生物膜反应器-沉淀池-厌氧池(MBBR-SA)工艺进行处理,重点考察了其COD去除、脱氮以及污泥减量化的性能。处理前厌氧出水水质参数为COD 1 350~1 851 mg/L、TN 45~73 mg/L和TP 35~55 mg/L。结果表明,经过70 d的运行,在最佳水力停留时间(HRT)1.68 d与最佳回流比0.75条件下,出水平均COD、TN和NH4+-N浓度分别为91.5、12.4和11.4 mg/L,分别达到了《城镇污水处理厂污染物排放标准》二级标准、二级标准和一级B标准,其平均去除率分别为96.0%、87.4%和88.3%;该工艺未排放剩余污泥,其表观污泥产率为0.13,比MBBR降低了43.5%,具有明显的污泥减量化特性。  相似文献   

14.
超声处理对活性污泥系统污泥减量效果的研究   总被引:16,自引:0,他引:16  
在活性污泥系统采用超声波处理剩余污泥以考察污泥减量效果及其对系统处理效果的影响.结果表明:在声能密度0.25~0.50 W/mL范围内,经过1~30 min的超声波处理,系统表观产率显著下降,剩余污泥的产量可以减少20%~50%左右.同时发现,污泥的沉降性能指标SVI有所下降,而污泥的稳定性有所提高,活性污泥系统的出水水质略有不同程度的下降.  相似文献   

15.
采用常规活性污泥法、间歇曝气活性污泥法和SBR法对高浓度氯霉素废水进行了对比处理试验。结果表明 ,SBR法优于其他两种方法。当进水COD浓度为 4 910mg L ,COD容积负荷为 9.8kg m3·d ,去除率可达 91.6 %。当废水中NH+4约为 4 5 5mg L时 ,脱氮率可达 6 0 %左右。污泥指数稳定在 88左右。  相似文献   

16.
不同温度对SBR腐殖活性污泥系统运行效能的影响   总被引:1,自引:0,他引:1  
在10~22℃范围内,通过实验考察了温度对腐殖土间歇式活性污泥处理(SBR)系统的运行特性的影响.实验结果表明,降低温度对SBR腐殖活性污泥系统去除COD影响不大,当温度降至10℃时,COD去除率仍可达到80%以上;在22~14℃范围内,SBR腐殖活性污泥系统对NH+4-N和TN的去除影响不大,温度降至10℃时,NH+...  相似文献   

17.
K+、Ca2+、Mg2+对高盐肝素废水处理的影响   总被引:1,自引:0,他引:1  
高盐废水的生物处理效率因盐分对活性污泥系统的抑制作用而受到很大的限制。寻求降低盐抑制作用,提高生物处理效率的方法和技术是目前研究的热点。针对SBR工艺处理高盐肝素钠生产废水的活性污泥,从金属离子间的拮抗效应出发,研究了K+、Ca2+和Mg2+3种金属离子对污泥性能的影响。结果表明,K+、Ca2+和Mg2+添加量分别为40、50和150 mg/L时,COD去除率比对照组分别提高了2.8%、8.0%和3.8%,其余添加量下无明显改善;K+、Ca2+和Mg2+添加量分别为100、200和20 mg/L时,氨氮去除率比对照组分别提高了39.8%、9.8%和28.4%,其中Ca2+对氨氮去除效果的改善能力最差,同时在最佳添加量下讨论了这3种金属离子对污泥浓度以及污泥沉降速率的影响。  相似文献   

18.
考察了A2/O同步化学除磷工艺中Al2(SO4)3投加量对TP、COD、NH+4-N和TN的去除率与活性污泥性能的影响。结果表明,常温(18~32℃)条件下同步化学除磷最适宜的Al2(SO4)3投加量为铝、磷摩尔比0.5∶1,此条件下出水TP、COD、NH+4-N和TN浓度均能达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。研究同时发现,Al2(SO4)3投加后,活性污泥的沉降性能和污泥活性均有所增强,其中SVI值由93.8 m L·g-1降至81.3 m L·g-1,Zeta电位由-5.5 m V降至-11.8 m V,胞外聚合物EPS含量增加了59.9%,蛋白质与多糖的比例由5.2降至2.1,比耗氧速率由4.2 mg·(g·min)-1升高到6.7 mg·(g·min)-1(以MLSS计)。微生物菌群结构分析结果表明,投药后污泥中微生物种类由投药前的8种减少为6种,硝化菌和反硝化菌比例有所降低,聚磷菌比例升高为6%。在低温(0~10℃)条件下,Al2(SO4)3投加量需有所增加,当铝、磷摩尔比为1∶1时,反应器出水TP、COD、TN和NH+4-N浓度方可达到一级A标准。  相似文献   

19.
针对实际海水养殖废水低碳高氮的特点,采用间歇式活性污泥法(SBR)和好氧活性污泥添加硅藻土载体的方式,考察硅藻土载体和活性污泥共同作用下的好氧曝气系统对海水养殖废水中氨态氮(NH+4-N)、亚硝酸态氮(NO-2-N)和化学耗氧量(COD)的去除效果,以及对污泥沉降性能和硝化细菌特征的影响。实验结果表明,常温条件下,溶解氧(DO)≥4.5mg/L,p H控制在7.0~8.0,HRT为11 h,沉降时间10 min,反应器可以处理NH+4-N浓度在50 mg/L左右的海水养殖废水,NH+4-N和COD去除率分别达到98.93%左右和76.62%以上,NO-2-N出水浓度低于0.028 mg/L。载体污泥颗粒照片和扫描电镜结果表明,添加硅藻土载体内核后,颗粒污泥的成熟期缩短,颗粒的稳固度和沉降性能提高。在系统启动成功稳定运行后,通过FISH分析表明,在氨氧化菌(AOB)与亚硝酸盐氧化菌(NOB)成为优势菌群后,AOB大约占总菌群的33.5%,并且AOB与NOB菌群数量约为1∶1.33,AOB和NOB两大类菌群之和约占总菌群的77.2%,成为系统中优势菌群。  相似文献   

20.
直接向采用交替停曝气模式运行的序批式反应器(SBR)中投加ClO_2,考察了在处理模拟生活污水时不同ClO_2投加剂量对SBR污泥减量及污染物去除的影响。结果表明,ClO_2最佳投加剂量为2.0 mg ClO_2/g干污泥,此时,与对照反应器(未投加ClO_2)相比,SBR污泥减量效率为28.0%,系统污泥产率系数为0.08 g MLVSS/g COD。溶胞-隐性生长、解偶联代谢和内源代谢对污泥减量均有贡献。在ClO_2最佳投加剂量下,SBR出水COD、NH3-N、TN和TP浓度分别增加了(28.80±1.53)、(3.49±1.79)、(2.30±0.02)、(0.21±0.05)mg/L,但出水水质仍满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号