首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
Non-invasive prenatal screening (NIPS) has revolutionized the approach to prenatal fetal aneuploidy screening. Many commercial providers now offer analyses for sub-chromosomal copy number variations (CNVs). Here, we review the use of NIPS in the context of screening for microdeletions and microduplications, issues surrounding the choice of disorders tested for, and the advantages and disadvantages associated with the inclusion of microdeletions to current NIPS. Several studies have claimed benefits; however, we suggest that microdeletions have not demonstrated a low enough false positive rate to be deemed practical or ethically acceptable, especially considering their low positive predictive values. Because a positive NIPS result should be confirmed using diagnostic techniques, and false positive rates are as high as 90% for some microdeletions, diagnostic testing seems preferable when the goal is to maximize the detection of microdeletion or microduplication syndromes.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Achondroplasia is the most common form of short-limbed dwarfism in humans and is caused by mutations in the FGFR3 gene. Currently, prenatal diagnosis of this disorder relies on invasive procedures. Recent studies have shown that fetal single gene point mutations could be detected in cell-free DNA (cf-DNA) from maternal plasma by either the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) assay with single allele base extension reaction (SABER) approach or the size fractionation of cf-DNA in maternal plasma. Here, we combined the two approaches to non-invasively examine the fetal G1138A mutation in maternal plasma. cf-DNA was extracted from maternal plasma samples obtained from two pregnant women at risk for achondroplasia. The fetal G1138A mutation was determined by the analysis of size-fractionated cf-DNA in maternal plasma using MALDI-TOF MS with SABER approach and homogenous MassEXTEND (hME) assay, respectively. The fetal G1138A mutation was detectable in the two achondroplasia-affected pregnancies by the analysis of cf-DNA in maternal plasma using MALDI-TOF MS. However, the size-fractionation approach led to a more precise detection of the fetal mutation in both analyses. This analysis would be suitable for non-invasive prenatal diagnosis of diseases caused by fetal single gene point mutations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
11.

Objective

To examine the impact of the fetal fraction (FF) on the screen-positive rate in screening for microdeletion 22q11.2.

Methods

This study is based on samples that were analyzed using the Harmony® Prenatal Test (Roche Inc). The study cohort comprised samples from women with singleton pregnancies who were at least 16 years old and at least at 11 weeks' gestation. Logistic regression analysis was used to determine significant covariates that carry an impact on the screen-positive rate.

Results

The study population consisted of 52,019 pregnancies, including 309 pregnancies with a high-risk result for microdeletion 22q11.2. Thus, the overall screen-positive rate was 0.59%. In the low-risk group, the FF was 10.1%, and in the high-risk group, it was 7.3%. Regression analysis indicated a strong correlation between the FF and the screen-positive rate. In the cases with an FF of <11.0%, the screen-positive rate was 0.92%, while it was 0.13% in the group with a higher FF.

Conclusion

The screen-positive rate depends on the FF. In order to keep the rate low, we recommend restricting the analysis to samples with a FF of 11% and more.  相似文献   

12.
13.
14.
Cell-free DNA (cfDNA) testing for fetal aneuploidy is one of the most important technical advances in prenatal care. Additional chromosome targets beyond common aneuploidies, including the 22q11.2 microdeletion, are now available because of this clinical testing technology. While there are numerous potential benefits, 22q11.2 microdeletion screening using cfDNA testing also presents significant limitations and pitfalls. Practitioners who are offering this test should provide comprehensive pretest and posttest prenatal counselling. The discussion should include the possibility of an absence of a result, as well as the risk of possible discordance between cfDNA screening results and the actual fetal genetic chromosomal constitution. The goal of this review is to provide an overview of the cfDNA testing technologies for 22q11.2 microdeletions screening, describe the current state of test validation and clinical experience, review “no results” and discordant findings based on differing technologies, and discuss management options.  相似文献   

15.
16.
The discovery of cell-free DNA (cfDNA) in maternal plasma has opened up new promises for the development of non-invasive prenatal testing (NIPT). Application of cfDNA in NIPT of fetus diseases and abnormalities is restricted by the low amount of fetal DNA molecules in maternal plasma. Fetus-derived cfDNA in maternal plasma are shorter than maternal DNA, thus leveraging the maternal and fetus-derived cfDNA molecules size difference has become a novel and more accurate method for NIPT. However, multiple biological properties such as size distribution of plasma DNA, proportion of fetal-derived DNA and methylation levels in maternal plasma across different gestational ages still remain largely unknown. Further insights into the size distribution and fragmentation pattern of circulating plasma cfDNA will shed light on the origin and fragmentation mechanisms of cfDNA during physiological and pathological processes in prenatal diseases and enhance our ability to take the advantage of plasma cfDNA as a molecular diagnostic tool. In the review, we start by summarizing the research techniques for the determination of the fragmentation profiles of cfDNA in maternal plasma. We then summarize the main progress and findings in size profiles of maternal plasma cfDNA and cffDNA. Finally, we discuss the potential diagnostic applications of plasma cfDNA size profiling.  相似文献   

17.
18.
Noninvasive prenatal testing (NIPT) using cell-free DNA is being offered to an increasing number of women. Comprehensive pre-test counseling is complicated by emerging information about the benefits and limitations of testing, as well as the potential to detect incidental findings. Genetic counselors are trained to facilitate informed decision-making; however, not all centers have access to these professionals. To aid in the informed consent process, we have summarized key points to be included in discussions with patients who are considering NIPT. © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号