首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用异位修复法,利用非离子表面活性剂洗涤柴油污染土壤,并在洗涤过程中曝气强化。考察了洗涤效果的影响因素,并通过表面张力和接触角的测定探讨了洗涤机理。实验结果表明:曝气对污染土壤中柴油的洗脱有强化作用,可提高洗脱率10%~20%;3种非离子表面活性剂的洗脱效果优劣次序为聚氧乙烯月桂醚(Brij-35)曲拉通X-100(TX-100)吐温-80(Tw-80);在表面活性剂浓度为1倍临界胶束浓度、曝气量为7.5 L/min、洗涤时间为60 min、洗涤液pH为11.0的优化条件下,Brij-35对柴油的洗脱率达77.4%,污染土样的含油率从7.0%降至1.6%,接触角从24.12°降至6.65°,可基本恢复土壤的亲水性;洗涤液的表面张力随表面活性剂浓度的增加而降低,但不受洗涤液pH的影响。  相似文献   

2.
The ability of low-cost activated carbon prepared from Ceiba pentandra hulls, an agricultural waste material, for the removal of lead and zinc from aqueous solutions has been investigated. In the batch tests experimental parameters were studied, including solution pH, contact time, adsorbent dose and initial metal ions concentration. The adsorbent exhibited good sorption potential at pH 6.0. Maximum removal of lead (99.5%) and of zinc (99.1%) with 10 g/l of sorbent was observed at 50 mg/L sorbate concentration. Removals of about 60-70% occurred in 10 min, and equilibrium was attained at around 50 min for both metals. The functional groups (CO, SO,-OH) present on the carbon surface were responsible for the adsorption of metal ions. The adsorption parameters were analysed using both the Freundlich and Langmuir models. The data are better fitted by the Freundlich isotherm as compared to Langmuir model, and the adsorption capacities for lead and zinc were 25.5 and 24.1 mg/g, respectively. Kinetics of adsorption obeyed a second order rate equation and the rate constant was found to be 2.71 x 10(-2) and 2.08 x 10(-2) g/mg/min for lead and zinc, respectively. The desorption studies were carried out using dilute HCl, and the effect of HCl concentration on desorption was studied. Maximum desorptions of 85% for lead and 78% for zinc were attained with 0.15 M HCl.  相似文献   

3.
This paper was focused on the biosorption of phosphate ions from aqueous solution onto the cetyltrimethylammonium bromide (CTAB) modified multi-component biosorbent composed of pine, oak, hornbeam and fir sawdust biomasses. A series of batch tests were conducted and the effects of solution pH, ion concentration, quantity of biosorbent and contact time on the bioremoval of phosphate ions were investigated. The biosorption data of kinetic and equilibrium were modeled using various mathematical equations. The phosphate removal increased with increased ion concentration and decreased with increased pH and biosorbent quantity values. The equilibrium state was reached within 120 min of exposure time. The process kinetics was best described by Elovich model while the isotherm data of biosorption best obeyed Freundlich equation. The obtained results revealed that the use of CTAB modified mix sawdust biosorbent presented interesting options for bioremediation of contaminated environments and waste recycling (as nutrient fertilizer and compost material).  相似文献   

4.
A laboratory study was conducted to evaluate the effects of composition and concentration of mixed anionic/nonionic surfactants on the efficiency of a micellar-enhanced ultrafiltration (MEUF) operation in removing metal ions/organic solutes from aqueous solutions. Based on the analysis of surface tensions and micelle sizes, it was found that for mixed sodium dodecylsulfate (SDS)/Triton X-100 surfactants, the critical micelle concentration (cmc) was significantly lower than that of SDS and mixed micelles formed. The mixed surfactant system was then applied in a cross-flow mode of MEUF, in which the concentration polarization can be neglected, to remove Cu2+ from aqueous solutions. With a surfactant concentration of 10 mM, the Cu2+ rejection was negligible by using pure Triton X-100 and increased with increasing SDS mole fraction with a value as high as 85%, which suggests that the rejection of Cu2+ was due to the electrostatic attraction between Cu2+ and SDS. Furthermore, pronounced Cu2+ rejection was obtained for a 5 mM SDS solution, which was attributable to a decrease in the cmc of SDS by the existence of Cu2+. When the MEUF technique was applied to remove Cu2+ and phenol simultaneously from aqueous solutions, the Cu2+ rejection was slightly enhanced in the presence of phenol. However, the rejection of phenol was comparatively low, approximately 27%, which may be caused by its relatively hydrophilic characteristic.  相似文献   

5.
The direct application of surfactants to petroleum-contaminated soil has been proposed as a mechanism to increase the bioavailability of insoluble compounds. Solubilization of hydrophobic compounds into the aqueous phase appears to be a significant rate limiting factor in petroleum biodegradation in soil. Nonionic surfactants have been developed to solubilize a variety of compounds, thus increasing the desorption of contaminants from the soil. In this study, laboratory scale land treatment scenarios were used to monitor the bioremediation of petroleum contaminated soils. In efforts to achieve the lowest levels of residual petroleum hydrocarbons in the soil following biotreatment, 0.5 and 1.0% (volume/weight) surfactant was blended into soils under treatment. Two soil types were studied, a high clay content soil and a sandy, silty soil. In both cases, the addition of surfactant (Adsee 799®, a blend of ethoxylated fatty acids, Witco Corporation) stimulated biological activity as indicated by increased heterotropbic colony forming units per gram of soil. However, the increased activity was not correlated with removal of petroleum hydrocarbons. The results suggest that the application of surfactants directly to the soil for the purpose of solubilizing hydropbobic compounds was not successful in achieving greater levels of petroleum hydrocarbon removal.  相似文献   

6.
While hydrophilic compounds are degraded easily in Trickling bed air biofilters (TBABs), hydrophobic compounds are retarded until biological cultures produce a sufficient RNA or enzyme/protein to utilize this compound. Hydrophobic compounds are not readily bio-available which makes them reluctant to biodegradation as mass transfer between the gas and liquid phases is a rate limiting step. To enhance the destruction of hydrophobic compounds in TBABs, the utilization of surfactant was introduced to increase the solubility which helps overcoming the rate limiting step. The surfactant was used as well to limit the growth of excess biomass ensuring smooth flow through the biofilter bed and preventing short circuits. Two different non-ionic non-toxic surfactants were used in this study: Triton X-100 and Tomadol® 25-7. Two lab-scale controlled TBABs were operated for investigating the performance difference for n-Hexane as an example of hydrophobic volatile organic compound (VOC) with and without the addition of surfactant. Operating conditions in both TBABs were as follows: nutrient feed rate (2L/day), air flowrate (1.4L/min), bed depth (60cm), empty bed retention time (120s), bed material (diatomaceous earth pellets) and room-temperature. The inlet concentration was changed from 50 to 100ppmv. Acclimation period, removal profile along biofilter depth, nitrogen consumption, and CO2 production were compared under continuous loading operation condition. The optimum concentration of surfactant in the nutrient feed was determined by a batch experiment. The effect of different surfactant concentrations on VOC water solubility with time was studied by considering different VOC concentration sets within the TBAB loading rate range.  相似文献   

7.
The removal of the ammonium and phosphorous from the synthetic industrial effluent by the ion exchange resins was studied in this paper, aiming at the determination of the effects of competitive ions, humic acid, pH and resin amount. The kinetic experiments show that the equilibrium time for the removal of both contaminants in the absence and presence of the competing matters was 4 h. Na+ and K+ significantly reduced the ammonium removal percentage, while the existence of Mg2+, Ca2+ and humic acid also had a negative influence. Adsorption of ammonium ions in both absence and presence of Na+ and K+ observed the linear isotherm, however, it did not follow commonly used isotherms in the presence of Na+, K+, Mg2+, Ca2+ and humic acid. The phosphorous removal decreased in the presence of the competitive matters, such as Cl-, CO3(2-), SO4(2-) and humic acid. Higher pH can cause higher phosphorous removal percentage. A decrease in the solution pH was observed in the phosphorous removal experiments, possibly due to the ion exchange and the adsorption of OH-. Uptake of humic acid by the resins was observed. Finally, a series of fixed-bed experiments were performed, showing that the performance was dependent on the empty bed contact time (EBCT). Higher EBCT would cause higher bed volumes of both treated ammonium and phosphorous.  相似文献   

8.
采用KClO氧化吸收烟气中的Hg0,研究了脱汞性能和反应机理。结果表明:提高反应温度会降低脱汞性能,加快KClO热分解,减小Hg0溶解度,抑制氧化还原放热反应;提高Hg0浓度会增大Hg0在气相主体和气液界面的分压差,进而提高Hg0的传质速率,使Hg0去除率提高;继续提高Hg0浓度,反应限速步骤从气膜移向液膜,使Hg0去除率下降;KClO质量分数低于10%时,Hg0和KClO溶液的气液两相传质效率由液相控制;Hg0去除率随吸收液初始pH的升高而降低,吸收液pH随反应时间的延长而升高。  相似文献   

9.
Sunflower residue, an agricultural waste material for the removal of lead (Pb) and cadmium (Cd) from aqueous solutions were investigated using a batch method. Adsorbent was prepared by washing sunflower residue with deionized water until the effluent was colorless. Batch mode experiments were carried out as a function of solution pH, adsorbent dosage, initial concentration and contact time. The results indicated that the adsorbent showed good sorption potential and maximum metal removal was observed at pH 5. Within 150 min of operation about 97 and 87 % of Pb and Cd ions were removed from the solutions, respectively. Lead and Cd sorption curves were well fitted to the modified two-site Langmuir model. The adsorption capacities for Pb and Cd at optimum conditions were 182 and 70 mg g?1, respectively. The kinetics of Pb and Cd adsorption from aqueous solutions were analyzed by fitting the experimental data to a pseudo-second-order kinetic model and the rate constant was found to be 8.42 × 10?2 and 8.95 × 10?2 g mg?1 min?1 for Cd and Pb, respectively. The results revealed that sunflower can adsorb considerable amount of Pb and Cd ions and thus could be an economical method for the removal of Pb and Cd from aqueous systems.  相似文献   

10.
废水中汞离子去除方法的研究进展   总被引:1,自引:0,他引:1  
黄美荣  王琳  易辉  李新贵 《化工环保》2007,27(2):135-138
基于国内外研究文献结合自身最新研究工作,论述了去除工业废水中汞离子的化学沉淀法、微电解混凝沉淀法、吸附法等方法及其作用原理,并分析了各种方法的优缺点;指出了吸附法对含极低浓度汞离子废水的深度处理具有明显的优势。近年来合成的新型导电性聚芳香胺对汞离子初始质量浓度为十至数百mg/L的溶液中汞的去除率在99.99%以上,在含汞工业废水处理中显示出了广阔的应用前景。  相似文献   

11.
Adsorption studies for phenol removal from aqueous solution on activated palm seed coat carbon (PSCC) were carried out under varying experimental conditions of contact time, phenol concentration, adsorbent dose and pH. Adsorption equilibrium was reached within 3 h for phenolic concentrations 10-60 mg l(-1). Kinetics of adsorption obeyed a first order rate equation. The percent removal remained constant over the pH range 4-9 for a phenolic concentration of 25 mg (l-1). The equilibrium data could be described well by the Freundlich isotherm equation. The adsorption of phenol on PSCC follows the film diffusion process. A comparative study with a commercial activated carbon showed that PSCC is two times more effective than commercial activated carbon. The studies showed that the palm seed coat carbon can be used as an efficient adsorbent material for the removal of phenolics from water and wastewater.  相似文献   

12.
We have successfully prepared a bead-type adsorbent from two materials with different adsorption characteristics. Heavy metals were removed by greatly swollen egg shell membrane-conjugated chitosan beads. The egg shell membrane accumulated and removed precious metal ions from a dilute aqueous solution with a high affinity in a short contact time. Experiments suggested that chitosan beads could take up gold ions with great capacity and selectivity by conjugation with egg shell membrane. Under certain conditions, the selective removal of gold and copper in a mixture of gold and copper ions by egg shell membrane-conjugated chitosan beads was 100% and 2%, respectively. Egg shell membrane-conjugated chitosan beads can be seen as a promising material to recover gold in wastewater from various industries, such as electroplating.  相似文献   

13.
Removal of Cr6 + and Ni2+ from aqueous solution using bagasse and fly ash   总被引:9,自引:0,他引:9  
Raw bagasse and fly ash, the waste generated in sugar mills and boilers respectively have been used as low-cost potential adsorbents. Raw bagasse was pretreated with 0.1N NaOH followed by 0.1N CH3COOH before its application. These low-cost adsorbents were used for the removal of chromium and nickel from an aqueous solution. The kinetics of adsorption and extent of adsorption at equilibrium are dependent on the physical and chemical characteristics of the adsorbent, adsorbate and experimental system. The effect of hydrogen ion concentration, contact time, sorbent dose, initial concentrations of adsorbate and adsorbent and particle size on the uptake of chromium and nickel were studied in batch experiments. The Sorption data has been correlated with Langmuir, Freundlich and Bhattacharya and Venkobachar adsorption models. The efficiencies of adsorbent materials for the removal of Cr(VI) and Ni(II) were found to be between 56.2 and 96.2% and 83.6 and 100%, respectively. These results were obtained at the optimized conditions of pH, contact time, sorbent dose, sorbate concentration of 100 mg/l and with the variation of adsorbent particles size between 0.075 and 4.75 mm. The order of selectivity is powdered activated carbon > bagasse > fly ash for Cr(VI) removal and powdered activated carbon > fly ash > bagasse for Ni(II) removal.  相似文献   

14.
This paper deals with a new application of poly 3-methyl thiophene synthesized chemically onto sawdust (termed as P3MTh/SD) as an effective adsorbent for removal of Cr(VI) ions from aqueous solutions using column system. Chemical synthesis of poly 3-methyl thiophene was performed by addition of ferric chloride (in chloroform) as oxidant to sawdust which had previously been soaked in monomer solution. All the sorption experiments were conducted using dynamic or column system at room temperature. The effect of important parameters such as pH and initial concentration on uptake of Cr(VI) was investigated. In order to find out the possibility of the regeneration and reuse of the exhausted adsorbent, desorption studies were also performed. The currently introduced adsorbent was found to be an efficient adsorbent for removal of highly toxic and hazardous Cr(VI) ions from aqueous solutions. As our breakthrough analysis has indicated, each gram of P3MTh/SD is able to remove more than 95% of Cr(VI)ions from 300 mL of Cr(VI) polluted solution with the initial concentration of 25 mg L−1 in column system. Sorption/desorption of Cr(VI) ions was found to be a highly pH dependent processes.  相似文献   

15.
采用乳状液膜法分离提取废汞触媒浸出液中的Hg~(2+)。考察了影响乳状液膜体系分离富集汞的主要因素,并对分离提取后的乳液相进行了破乳研究。分离提取实验结果表明:乳状液膜体系的最佳配方为流动载体磷酸三丁酯体积分数10%、表面活性剂失水山梨糖醇脂肪酸酯体积分数4%、膜溶剂磺化煤油体积分数86%、内水相HCl溶液浓度0.10mol/L、油相与内水相的体积比1∶1;在乳状液与外水相的体积比为1∶10的条件下Hg~(2+)提取率达78.50%。破乳实验结果表明:加热破乳、离心破乳、加热离心联合破乳3种方法的破乳率分别为29.0%,54.0%,85.7%;采用加热离心联合法破乳后,Hg~(2+)富集倍数达8.5。  相似文献   

16.
The purpose of this study was to determine the cadmium (Cd) biosorption capacities of several agricultural wastes from aqueous solutions. Samples were tested unaltered and after hydrochloric acid treatment. Additional parameters tested include sample dose, contact time, particle size, mixing temperature, and the concentrations and pH of the Cd solutions. Desorption studies were performed to determine if the removed Cd could be recovered. In addition, tests were conducted to determine if the agricultural waste samples (AWS) could be reused for additional Cd biosorption cycles. The results of this study demonstrate a wide range of Cd biosorption proficiencies ranging from 33 to 100% removal. The parameters that resulted in higher Cd removal include higher sample dose, higher pH, and lower Cd solution concentration. Desorption results showed a 36–56% Cd recovery rate. Reused AWS were effective at removing Cd during subsequent trials. Therefore, all AWS types tested in this study can be reused for additional Cd biosorption cycles. Hence, it is possible that using AWS for metal treatment could reduce hazardous waste disposal inefficiencies and costs by avoiding disposing of spent AWS following each Cd biosorption cycle.  相似文献   

17.
In the present technologically fast changing situation related to waste management practices, it is desirable that disposal of plant waste should be done in a scientific manner by keeping in view economic and pollution considerations. This is only possible when the plant waste has the potential to be used as raw material for some useful product. In the present study, groundnut shell, an agricultural waste, was used for the preparation of an adsorbent by chemical activation using ZnCl2 under optimized conditions and its comparative characterisation was conducted with commercially available powdered activated carbon (CPAC) for its physical, chemical and adsorption properties. The groundnut shell based powdered activated carbon (GSPAC) has a higher surface area, iodine and methylene blue number compared to CPAC. Both of the carbons were used for the removal of malachite green dye from aqueous solution and the effect of various operating variables, viz. adsorbent dose (0.1-1 g l(-1)), contact time (5-120 min) and adsorbate concentrations (100-200 mg l(-1)) on the removal of dye, has been studied. The experimental results indicate that at a dose of 0.5 g l(-1) and initial concentration of 100 mg l(-1), GSPAC showed 94.5% removal of the dye in 30 min equilibrium time, while CPAC removed 96% of the dye in 15 min. The experimental isotherm data were analyzed using the linearized forms of Freundlich, Langmuir and BET equations to determine maximum adsorptive capacities. The equilibrium data fit well to the Freundlich isotherm, although the BET isotherm also showed higher correlation for both of the carbons. The results of comparative adsorption capacity of both carbons indicate that groundnut shell can be used as a low-cost alternative to commercial powdered activated carbon in aqueous solution for dye removal.  相似文献   

18.
以沉淀一热解法制备了纳米级Co3O4催化剂,并用X射线衍射仪、红外光谱仪对Co3O4催化剂进行了表征。以300W高压汞灯为光源,研究了Co3O4催化剂对不同活性染料的光催化氧化活性。实验结果表明:在活性染料质量浓度为20mg/L、250mL染料溶液中Co3O4催化剂加入量为150mg、反应2h的条件下,Co3O4催化剂对B—GFF黑、B—RN蓝、K—NR艳蓝3种活性染料溶液的脱色率分别为95%,87%,77%;适当加入酸或碱有利于提高处理效率,反应后染料溶液的pH为7.12~8.37,染料溶液初始pH为10.00时的脱色率最高为100%;Co3O4催化剂具有一定的再利用价值。  相似文献   

19.
采用液膜萃取—酸析沉降—络合萃取组合工艺对有机磷阻燃剂生产废水进行预处理.最佳工艺条件为:液膜萃取时,液膜油相(表面活性剂与煤油的混合液)与内水相(H2SO4溶液)的体积比2∶1、乳化液膜与废水的体积比1∶8、废水pH 13.0,硫酸体积分数10%、煤油中表面活性剂质量浓度30 g/L、液膜萃取时间 15 min;酸析沉降时,废水pH l.0,酸析沉降时间30 min;络合萃取时,络合萃取剂(烷基叔胺N235与煤油的混合液)中烷基叔胺N235体积分数30%,络合萃取剂与废水的体积比1∶4,废水pH l.0,络合萃取时间30 min.在此最佳处理条件下,废水COD总去除率可达93%,吡啶去除率达99.9%以上,总磷去除率可达97%,BOD5/COD提高至0.32,有利于后续生化处理.  相似文献   

20.
以强碱(NaOH)溶液为浸取剂,采用碱浸法回收镀锌钢板废料中的锌,考察了不同因素(反应温度、反应时间、碱浓度、添加剂)对锌浸出效果的影响,并对添加剂的作用机理进行了分析。实验结果表明:在NaOH质量浓度为250 g/L、反应温度为90℃、反应时间为300 min的最佳工艺条件下,锌的浸出率高达97.89%;添加NaNO_3可提高锌在碱液中的腐蚀电位和腐蚀电流,从而加快镀锌钢板废料中锌的溶解,缩短反应时间;添加KMnO_4对反应速率基本无影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号