首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mass balance, energy consumption and cost are basic pieces of information necessary for selecting a waste management technology. In this study, composting facilities that treat different types of organic waste were studied by questionnaire survey and via a chemical analysis of material collected at the facilities.The mass balance was calculated on a dry weight basis because the moisture content of organic waste was very high. Even though the ratio of bulking material to total input varied in the range 0-65% on a dry basis, the carbon and ash content, carbon/nitrogen ratio, heavy metal content and inorganic nutrients in the compost were clearly influenced by the different characteristics of the input waste. The use of bulking material was not correlated with ash or elemental content in the compost. The operating costs were categorised into two groups. There was some economy of scale for wages and maintenance cost, but the costs for electricity and fuel were proportional to the amount of waste. Differences in operating costs can be explained by differences in the process characteristics.  相似文献   

2.
Waste materials from the clam processing industry (offal, shells) have several special characteristics such as a high salinity level, a high nitrogen content, and a low C/N ratio. The traditional disposal of clam waste through landfilling is facing the challenges of limited land available, increasing tipping fees, and strict environmental and regulatory scrutiny. The aim of this work is to investigate the performance of in-vessel composting as an alternative for landfill application of these materials. Experiments were performed in both laboratory-scale (5L) and pilot-scale (120L) reactors, with woodchips as the bulking agent. In the laboratory-scale composting test, the clam waste and woodchips were mixed in ratios from 1:0.5 to 1:3 (w/w, wet weight). The high ratios resulted in a better temperature performance, a higher electrical conductivity, and a higher ash content than the low-ratio composting. The C/N ratio of the composts was in the range of 9:1-18:1. In the pilot-scale composting test, a 1:1 ratio of clam waste to woodchips was used. The temperature profile during the composting process met the US Environmental Protection Agency sanitary requirement. The final cured compost had a C/N ratio of 14.6, with an ash content of 167.0+/-14.1g/kg dry matter. In addition to the major nutrients (carbon, nitrogen, calcium, magnesium, phosphorus, potassium, sulfur, and sodium), the compost also contained trace amounts of zinc, manganese, copper, and boron, indicating that the material can be used as a good resource for plant nutrients.  相似文献   

3.
Characteristics of municipal solid waste and sewage sludge co-composting   总被引:1,自引:0,他引:1  
The purpose of this work is to study the characteristics of the co-composting of municipal solid waste (MSW) and sewage sludge (SS). Four main influencing factors (aeration pattern, proportion of MSW and SS, aeration rate and mature compost (MC) recycling) were systematically investigated through changes of temperature, oxygen consumption rate, organic matters, moisture content, carbon, nitrogen, carbon-to-nitrogen ratio, nitrogen loss, sulphur and hydrogen. We found that a continuous aeration pattern during composting was superior to an intermittent aeration pattern, since the latter delayed the composting process. A 3:1 (v:v) mixture of MSW and SS was most beneficial to composting. It maintained the highest temperature for the longest duration and achieved the fastest organic matter degradation and highest N content in the final composting product. A 0.5L/minkgVS aeration rate best ensured rapid initiation and maintained moderate moisture content for microorganisms. After the mature MC was recycled to the fresh materials as a bulking agent, the structure and moisture of the initial materials were improved. A higher proportion of MC resulted in quicker decrease of the temperature, oxygen consumption rate and moisture. Therefore a 3:1:1 (v:v:v) proportion of MSW: SS: MC is recommended.  相似文献   

4.
In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.  相似文献   

5.
A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.  相似文献   

6.
This study investigated the feasibility of a bulking agent of granular porous media (GPM) for the composting of swine manure. Two lab-scale composting reactors were operated to evaluate the general performances and maturity parameters using GPM made of wastes from the Portland cement manufacturing processes as an alternative bulking agent. The overall volatile solid (VS) removal was 38.5% (dry basis). During the experiments, moisture content ranged between 41% and 53%, ensuring feasibility of microbial activity in composting. Cured compost showed proper maturity and low phytotoxicity, despite the slight decreases of CO(2) production and VS removal at the second batch operation. Various physico-chemical parameters of the cured compost met the regulatory standards reported elsewhere. The pH, carbon-to-nitrogen ratio, ammonia nitrogen and soluble organic carbon (SOC) of the cured compost were significantly correlated to the germination index (GI) using the seeds of Chinese cabbage and lettuce, indicating the progressive biodegradation of phytotoxins as well as organic matter. Consequently, the results obtained in this study demonstrate that GPM could contribute to the environmentally friendly and economical composting of problematic swine manure as a recyclable bulking agent.  相似文献   

7.
Since the indiscriminate disposal of pig slurry can cause not only air pollution and bad odours but also nutrient pollution of ground waters and superficial waters, composting is sometimes used as one environmentally acceptable method for recycling pig manure. The aim of this study was to evaluate the effect of composting pig slurry on its sanitation (evaluated by ecotoxicity assays and pathogen content determination), as well as to determine the effect of a carbon-rich bulking agent (wood shavings, WS) and the starting C/N ratio on the changes undergone by different chemical (volatile organic matter, C and N fractions) and microbiological (microbial biomass C, ATP, dehydrogenase activity, urease, protease, phosphatase, and beta-glucosidase activities) parameters during composting. Pig slurry mixed with bulking agent (P+WS) and the solid faction separated from it, both with (PSF+WS) and without bulking agent (PSF), were composted for 13 weeks. Samples for analysis were taken from composting piles at the start of the process and at 3, 6, 9, and 13 weeks after the beginning of composting. The total organic carbon, water soluble C and ammonium content decreased with composting, while Kjeldahl N and nitrate content increased. The nitrification process in the PSF+WS pile was more intense than in the PSF or P+WS composting piles. The pathogen content decreased with composting, as did phytotoxic compounds, while the germination index increased with compost age. Piles with bulking agent showed higher values of basal respiration, microbial biomass carbon, ATP and hydrolase activities during the composting process than piles without bulking agent.  相似文献   

8.
Odour control at biowaste composting facilities   总被引:7,自引:0,他引:7  
There are several options to effectively reduce odorous emissions at composting facilities depending on the type of composting system used. Some of the more relevant measures for open and enclosed composting facilities are presented in this article. Results from different investigations on odour reduction efficiencies of biological waste gas treatment systems at various scales are presented. Biofilter/bioscrubber combinations were used and different biofilter materials were tested. The more relevant odorous substances in the waste gas were identified, and their reduction in the different systems was measured. The biofilter proved to be mainly responsible for efficient odour degradation. The investigations presented in this article revealed that screened compost was very effective, and proved to be a low cost biofilter material for odour degradation purposes. Screened compost showed higher degradation rates than a coke-compost mixture newly developed by the University of Leipzig. Furthermore, it seems that enclosed systems have advantages when compared to conventional open single bed biofilters.  相似文献   

9.
Mass balances and life cycle inventory of home composting of organic waste   总被引:1,自引:0,他引:1  
A comprehensive experimental setup with six single-family home composting units was monitored during 1 year. The composting units were fed with 2.6-3.5 kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63-77% in the six composting units. The carbon dioxide (CO(2)) and methane (CH(4)) emissions made up 51-95% and 0.3-3.9% respectively of the lost C. The total loss of nitrogen (N) during composting was 51-68% and the nitrous oxide (N(2)O) made up 2.8-6.3% of this loss. The NH(3) losses were very uncertain but small. The amount of leachate was 130 L Mg(-1) wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3-0.6% of the total loss of C and 1.3-3.0% of the total emitted N). Also the compost composition was within the typical ranges reported previously for home composting. The level of heavy metals in the compost produced was below all threshold values and the compost was thus suitable for use in private gardens.  相似文献   

10.
Effectiveness of three bulking agents for food waste composting   总被引:3,自引:0,他引:3  
Rather than landfilling, composting the organic fraction of municipal solid wastes recycles the waste as a safe and nutrient enriched soil amendment, reduces emissions of greenhouse gases and generates less leachate. The objective of this project was to investigate the composting effectiveness of three bulking agents, namely chopped wheat (Triticum) straw, chopped mature hay consisting of 80% timothy (milium) and 20% clover (triphullum) and pine (pinus) wood shavings. These bulking agents were each mixed in duplicates at three different ratios with food waste (FW) and composted for 10 days using prototype in-vessel composters to observe their temperature and pH trends. Then, each mixture was matured in vertical barrels for 56 days to measure their mass loss and final nutrient content and to visually evaluate their level of decomposition. Chopped wheat straw (CWS) and chopped hay (CH) were the only two formulas that reached thermophilic temperatures during the 10 days of active composting when mixed with FW at a wet mass ratio of 8.9 and 8.6:1 (FW:CWS and FW:CH), respectively. After 56 days of maturation, these two formulas were well decomposed with no or very few recognizable substrate particles, and offered a final TN exceeding the original. Wood shavings (WS) produced the least decomposed compost at maturation, with wood particles still visible in the final product, and with a TN lower than the initial. Nevertheless, all bulking agents produced compost with an organic matter, TN, TP and TK content suitable for use as soil amendment.  相似文献   

11.
For urban community composting centers, the proper selection and use of bulking agent is a key element in not only the cost but also the quality of the finished compost. Besides wood chips (WC) widely used as BA, readily usable cereal residue pellets (CRP) can provide biodegradable carbon and sufficient free air space (FAS) to produce stabilizing temperatures. The objective of the present project was to test at a community center, the effectiveness of CRP in composting food waste (FW). Two recipes were used (CRP with and without WC) to measure: FAS; temperature regimes, and; losses in mass, water, carbon and nitrogen. Both recipes were composted during three consecutive years using a 2 m3 commercial in-vessel composter operated in downtown Montreal (Canada). For all recipes, FAS exceeded 30% for moisture content below 60%, despite yearly variations in FW and BA physical properties. When properly managed by the center operator, both FW and CRP compost mixtures with and without WC developed within 3 days thermophilic temperatures exceeding 50 °C. The loss of total mass, water, carbon and nitrogen was quite variable for both recipes, ranging from 36% to 54%, 42% to 55%, 48% to 65%, and 4% to 55%, respectively. The highest loss in dry mass, water and C was obtained with FW and CRP without WC aerated to maintain mesophilic rather than thermophilic conditions. Although variable, lower nitrogen losses were obtained with CRP and WC as BA, compared to CRP alone, as also observed during previous laboratory trials. Therefore and as BA, CRP can be used alone but nitrogen losses will be minimized by adding WC. Compost stabilization depends on operator vigilance in terms of aeration. The measured fresh compost density of 530-600 kg/m3 indicates that the 2 m3 in-vessel composter can treat 6.5 tons of FW/year if operated during 7 months.  相似文献   

12.

This study presents the results obtained in compostability tests of organic fraction of municipal solid waste (OFMSW) digestate. The final aim was to obtain mature compost without phytotoxic effects. For the evaluation of the composting process, a novel parameter describing the performance of the composting process, the relative heat generation standardized with the initial volatile solid content (RHGVS0), was defined and evaluated at laboratory-scale. From these laboratory-scale test, the optimum operational conditions were obtained, a mixing ratio (v/v) of 1:1:0 (bulking agent:digestate:co-substrate) and with 15% of mature compost as inoculum. Subsequently, these optimum operational conditions were applied in the active phase of the composting pilot-scale reactor. The active composting stage took 7 days, subsequently a curing phase of 60 days was carried out at ambient conditions. After 30 days of curing, the mature compost showed a specific oxygen uptake rate (SOUR) of 0.14 mg O2/g VS·h, a germination index (GI) of 99.63% and a low volatile fatty acids (VFA) concentration (41.3 AcH mg/kgdm), being indicative of the good compost stability and maturity of the compost. The very good quality of the final compost obtained indicated that the RHGVS0 accurately describes the performance of the composting process.

  相似文献   

13.
Efficient composting process requires set of adequate parameters among which physical–chemical properties of the composting substrate play the key-role. Combining different types of biodegradable solid waste it is possible to obtain a substrate eligible to microorganisms in the composting process. In this work the composting of apple and tobacco solid waste mixture (1:7, dry weight) was explored. The aim of the work was to investigate an efficiency of biodegradation of the given mixture and to characterize incurred raw compost. Composting was conducted in 24 L thermally insulated column reactor at airflow rate of 1.1 L min?1. During 22 days several parameters were closely monitored: temperature and mass of the substrate, volatile solids content, C/N ratio and pH-value of the mixture and oxygen consumption. The composting of the apple and tobacco waste resulted with high degradation of the volatile solids (53.1%). During the experiment 1.76 kg of oxygen was consumed and the C/N ratio of the product was 11.6. The obtained temperature curve was almost a “mirror image” of the oxygen concentration curve while the peak values of the temperature were occurred 9.5 h after the peak oxygen consumption.  相似文献   

14.
Characterization of food waste and bulking agents for composting   总被引:1,自引:0,他引:1  
The characterization of food waste (FW) and locally available bulking agents (BA) are a prerequisite to optimizing compost recipes. This study measured the variation in FW characteristics (pH, dry matter (DM), carbon (C), wet bulk density and Total Kjeldahl Nitrogen (TKN)) produced by a restaurant and a community kitchen in downtown Montreal, Canada from May to August 2004. The project also measured the mass of FW produced by another restaurant and a group of 20-48 households, from June to August 2004. Locally available BA (hay, straw, pine wood shavings, cardboard, left over cattle feed and wheat residue pellets) were also characterized to formulate composting recipes based on the FW characteristics observed during a period representative of winter and summer conditions. Residential and restaurant FW characteristics varied significantly over the summer months, although the mass produced remained constant at 0.61 and 0.56 kg capita(-1)day(-1), respectively. In addition, the number of customers served by the restaurant increased by nearly 50% from June to August. The BA with the highest moisture adsorption capacity was found to be the wheat residue pellets, followed by chopped straw. Wheat residue pellets, chopped hay and left over cattle feed all presented a balanced C/N ratio. Wheat residue pellets and wheat straw, chopped hay and cardboard demonstrated neutral pH values. Based on the variable FW characteristics and monthly production rates, the formulation of recipes indicates that compost facilities must be flexible enough to handle seasonal variations of as much as 50% by volume.  相似文献   

15.
In this study, co-composting of food waste and green waste at low initial carbon to nitrogen (C/N) ratios was investigated using an in-vessel lab-scale composting reactor. The central composite design (CCD) and response surface method (RSM) were applied to obtain the optimal operating conditions over a range of preselected moisture contents (45–75%) and C/N ratios (13.9–19.6). The results indicate that the optimal moisture content for co-composting of food waste and green waste is 60%, and the substrate at a C/N ratio of 19.6 can be decomposed effectively to reduce 33% of total volatile solids (TVS) in 12 days. The TVS reduction can be modeled by using a second-order equation with a good fit. In addition, the compost passes the standard germination index of white radish seed indicating that it can be used as soil amendment.  相似文献   

16.
The degradation pattern of organic materials was confirmed by continuously measuring the quantity of CO2 evolved during the composting process in both batch and fed-batch operations. It was possible to predict the degradation pattern for organic material during a fed-batch operation from that observed during a batch operation after corrections made on the basis of two suppositions. First, it was assumed that the degradation of dog food (which degrades easily) occurred prior to the degradation of the bulking agent and seeding material that were contained in the raw compost mixture; second, it was assumed that the dog food thrown into the fed-batch operation, where the microorganisms were already proliferating, began to be actively degraded with only a short lag time. Received: June 16, 1998 / Accepted: August 7, 1999  相似文献   

17.
The successive stages in the composting process of forestry waste from evergreen oak (Quercus ilx sbsp. ballota) were studied under controlled conditions (initial) carbon to nitrogen ratio = 30, T = 27°C). The original material was composted for 6 months and sampled every 15 days. The variables measured on the oak biomass in the course of the experiment showed different kinetics: the weight loss and germination index underwent a monotonic increase whereas the reducing sugars, phenols and E465/E665 extinction ratio of the water-soluble fraction stabilized at their lowest values after the first 2 weeks. Other variables, such as alkali solubility, water repellency, pH and particle size, showed maximum or minimum values at intermediate stages of the experiment. In contrast to the adverse agrobiological effects of the direct application to soil of the original waste, germination biotests and greenhouse experiments showed that plant response improved from the 2 first weeks of composting. The kinetics observed for the parameters studied suggested that the less favourable effect on plant yield may come from phytotoxic substances in compost but also from the microbial use of soil N required for the transformation of the most biodegradable compost fractions in special hemicelluloses.  相似文献   

18.
This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates and in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.  相似文献   

19.
The influence of bulking agents on organic matter (OM) stability and nitrogen (N) availability in sewage sludge composts was investigated. The same sludge was composted on an industrial plant with different mixtures of bulking agents. The composting process included an active phase and a curing phase, both lasting 6 weeks, separated by the screening of composts. The OM evolution was characterised by carbon (C) and N mass balances in biochemical fractions. The OM stability and N potential availability of final composts were measured during soil incubations. During composting, the C and N losses reached more than 62% of the initial C and more than 45% of the initial N, respectively, due to C mineralisation or N volatilisation and screening. The bulking materials mostly influenced OM evolution during the active phase. They contributed to the mitigation of N losses during the active phase where N immobilisation through active microbial activity was favoured by bulking agents increasing the C:N ratio of the initial mixtures. However, the influence of bulking agents on OM evolution was removed by the screening; this induced the homogenisation of compost characteristics and led to the production of sludge composts with similar organic matter characteristics, C degradability and N availability.  相似文献   

20.
In this study a combined anaerobic/aerobic full-scale treatment plant designed for the treatment of the source-separated organic fraction of municipal solid waste (OFMSW) was monitored over a period of one year. During this period, full information was collected about the waste input material, the biogas production, the main rejects and the compost characteristics. The plant includes mechanical pre-treatment, dry thermophilic anaerobic digestion, tunnel composting system and a curing phase to produce compost. To perform the monitoring of the entire plant and the individual steps, traditional chemical methods were used but they present important limitations in determining the critical points and the efficiency of the stabilization of the organic matter. Respiration indices (dynamic and cumulative) allowed for the quantitative calculation of the efficiency of each treatment unit. The mass balance was calculated and expressed in terms of Mgy(-1) of wet (total) matter, carbon, nitrogen and phosphorus. Results show that during the pre-treatment step about 32% of the initial wet matter is rejected without any treatment. This also reduces the biodegradability of the organic matter that continues to the treatment process. About 50% of the initial nitrogen and 86.4% of the initial phosphorus are found in the final compost. The final compost also achieves a high level of stabilization with a dynamic respiration index of 0.3±0.1g O(2) per kg of total solids per hour, which implies a reduction of 93% from that of the raw OFMSW, without considering the losses of biodegradable organic matter in the refuse (32% of the total input). The anaerobic digestion process is the main contributor to this stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号