首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycosporine-like amino acids (MAAs), which occur in diverse taxonomic groups, exhibit in vivo absorption maxima between 310 nm and 360 nm and may play a photoprotective role against ultraviolet (UV) exposure. Using cultures of colonial Phaeocystis antarctica, we examined the relationship between MAA concentration, in vivo UV absorption, photoprotective (carotenoid) and photosynthetic pigments, and photosynthetically available radiation (PAR, 350–700 nm). UV absorption was high; chlorophyll-specific absorption, a * ph, at 330 nm ranged from 0.06 to 0.41 m2/mg chlorophyll a. Values of a * ph (330) were 4–13 times greater than a * ph (676). Mycosporine-glycine, shinorine, and mycosporine-glycine valine are responsible for the strong in vivo UV absorption. The sum of all MAAs increased with irradiance when normalized to chlorophyll a or carbon concentrations, whereas individual MAAs varied independently from each other. Mycosporine-glycine concentrations showed no statistically significant change over the range of light intensities, whereas mycosporine-glycine and shinorine concentrations increased at higher irradiances. The relative fluorescence yield for chlorophyll a was low in the UV region compared to the visible region, implying that absorbed UV radiation (<375 nm) is transferred inefficiently to chlorophyll a in the reaction center. Quantitative estimates of UV screening by MAAs are attributed to elevated MAA concentrations and increased diameter at high light. Received: 31 March 1999 / Accepted: 13 July 2000  相似文献   

2.
The magnitude of the package effect in five small phytoplankters [Thalassiosira sp., Clone 2601 (an unidentified eucaryote), Nannochloris atomus, Synechococcus Syn and Synechococcus WH 7803] was assessed by comparison of the absorption spectra of intact and disrupted cells. The package effect was considerably reduced with reductions in cell size and this was broadly in agreement with theoretical predictions based on Mie theory. However, the quantitative assessment of the package effect is confounded by an inability to assign attenuation (apparent absorption) measurements at =750 nm to either scattering or absorption. The magnitude of the apparent absorption at =750 nm was greatest with the smallest picoplankton species examined, and was reduced, but not eliminated, after cell disruption. Whilst the apparent absorption at =750 nm is commonly thought to be due to residual scattering losses, the available evidence does not exclude the possibility that this may be due in part to absorption by cells or cell constituents and this requires further examination. Although these difficulties are particularly evident with the small picoplankton species, there is no reason to expect that they will not complicate the assessment of the package effect in larger phytoplankton cells.  相似文献   

3.
Microzooplankton grazing and selectivity of phytoplankton in coastal waters   总被引:16,自引:0,他引:16  
Microzooplankton grazing activity in the Celtic Sea and Carmarthen Bay in summer 1983 and autumn 1984 was investigated by applying a dilution technique to high-performance liquid chromatographic (HPLC) analysis of photosynthetic pigments in phytoplankton present within natural microplankton communities. Specific grazing rates on phytoplankton, as measured by the utilisation of chlorophyll a, were high and varied seasonally. In surface waters during the autumn, grazing varied between 0.4 d-1 in the bay and 1.0 d-1 in the Celtic Sea, indicating that 30 and 65% of the algal standing stocks, respectively, were grazed daily. Grazing rates by microzooplankton within the thermocline in summer suggest that 13 to 42% of the crop was grazed each day. Microzooplankton showed selection for algae containing chlorophyll b, in spite of a predominance of chlorophyll c within the phytoplankton community. Changes in taxon-specific carotenoids indicated strong selection for peridinin, lutein and alloxanthin and selection against fucoxanthin and diadinoxanthin. This indicates a trophic preference by microzooplankton for dinoflagellates, cryptophytes, chlorophytes and prasinophytes and selection against diatoms, even when the latter group forms the largest crop within the phytoplankton. Interestingly, those algal taxa preferentially grazed also showed the highest specific growth-rates, suggesting a dynamic feed-back between microzooplankton and phytoplankton. Conversion of grazing rates on each pigment into chlorophyll a equivalents suggests firstly, that in only one experiment could all the grazed chlorophyll a be accounted for by the attrition of other chlorophylls and carotenoids, and secondly that in spite of negative selection, a greater mass of diatoms could be grazed by microzooplankton than any other algal taxon. The former may be due either to a fundamental difference in the break-down rates of chlorophyll a compared to other pigments, or to cyanobacteria forming a significant food source for microzooplankton. In either case, chlorophyll a is considered to be a good measure of grazing activity by microzooplankton.  相似文献   

4.
Chlorophyll a concentration was compared with carotenoid concentration as a predictor of seasonal changes in phytoplankton biomass within Bedford Basin, Nova Scotia, Canada (1976–1977). For all seasons, predictions of biomass from different measures of chlorophyll a were poor and were not improved when chlorophyll a was measured accurately by chromatography. Chlorophyll a and a carotenoid (fucoxanthin) were highly correlated and equally good predictors of total biomass, but neither was related to changes in peridinin concentration. Correlations between specific carotenoids and diatom or dinoflagellate biomass indicate that carotenoids may be useful to describe changes in biomass composition. For all pigments measured, predictions of biomass were hampered when large dinoflagellate cells were present, which biased estimates of total cell volume. Regardless of species composition or cell density, dinoflagellate biomass contributed on the average 68% of the total cell volume measured each day compared with only 14% for diatoms and 17% for flagellates, the most abundant taxa.  相似文献   

5.
Nutrients were added separately and combined to an initial concentration of 10 μM (ammonium) and/or 2 μM (phosphate) in a series of experiments carried out with the giant clam Tridacna maxima at 12 microatolls in One Tree Island lagoon, Great Barrier Reef, Australia (ENCORE Project). These nutrient concentrations remained for 2 to 3 h before returning to natural levels. The additions were made every low tide (twice per day) over 13 and 12 mo periods for the first and second phase of the experiment, respectively. The nutrients did not change the wet tissue weight of the clams, host C:N ratio, protein content of the mantle, calcification rates or growth rates. However, ammonium (N) enrichment alone significantly increased the total population density of the algal symbiont (Symbiodinium sp.: C = 3.6 · 108 cell clam−1, N = 6.6 · 108 cell clam−1, P = 5.7 · 108 cell clam−1, N + P = 5.7 · 108 cell clam−1; and C = 4.1 · 108 cell clam−1, N = 5.1 · 108 cell clam−1, P = 4.7 · 108 cell clam−1, N + P = 4.5 · 108 cell clam−1, at the end of the first and second phases of the experiment, respectively), although no differences in the mitotic index of these populations were detected. The total chlorophyll a (chl a) content per clam but not chlorophyll a per cell also increased with ammonium addition (C = 7.0 mg chl a clam−1, N = 13.1 mg chl a clam−1, P = 12.9 mg chl a clam−1, N + P = 11.8 mg chl a clam−1; and C = 8.8 mg chl a clam−1, N = 12.8 mg chl a clam−1; P = 11.2 mg chl a clam−1, N + P = 11.3 mg chl a clam−1, at the end of the first and second phases of the experiment, respectively). The response of clams to nutrient enrichment was quantitatively small, but indicated that small changes in inorganic nutrient levels affect the clam–zooxanthellae association. Received: 2 June 1997 / Accepted: 9 June 1997  相似文献   

6.
Phytoplankton pigments and species were studied at a coastal station off Sydney (New South Wales, Australia) over one annual cycle. Sudden increases in chlorophyll a (up to 280 mg m-2), due to short-lived diatom blooms, were found in May, July, September, January and February. These were superimposed upon background levels of chlorophyll a (20 to 50 mg m-2), due mostly to nanoplankton flagellates, which occurred throughout the year. The nanoplankton (<15 m) accounted for 50 to 80% of the total phytoplankton chlorophyll, except when the diatom peaks occurred (10 to 20%). The annual cycle of populations of 16 dominant species-groups was followed. Possible explanations as to alternation of diatom-dominated and nanoplankton-dominated floras are discussed. Thin-layer chromatography of phytoplankton pigments was used to determine the distribution of algal types, grazing activity, and phytoplankton senescence in the water column. Chlorophyll c and fucoxanthin (diatoms and coccolithophorids) and chlorophyll b (green flagellates) were the major accessory pigments throughout the year, with peridinin (photosynthetic dinoflagellates) being less important. Grazing activity by salps and copepods was apparent from the abundance of the chlorophyll degradation products pheophytin a (20 to 45% of the total chlorophyll a) and pheophorbide a (10 to 30%). Chlorophyllide a (20 to 45%) was associated with blooms of Skeletonema costatum and Chaetoceros spp. Small amounts of other unidentified chlorophyll a derivatives (5 to 20%) were frequently observed.  相似文献   

7.
Decreases in cell-nitrogen quota resulted in changes in the carbon-based quantum yield of photosynthesis, the chlorophyll a-specific absorption coefficient, and in vivo fluorescence in the marine diatom Chaetoceros gracilis in laboratory experiments performed in 1983 and 1984. The three parameters were independently determined for the two spectral regions dominated by either chlorophyll a or fucoxanthin absorption. As cell-nitrogen quota decreased, the quantum yield for both pigments decreased; the specific absorption coefficient for chlorophyll a and the in vivo chlorophyll a fluorescence excited by each pigment increased. The observed increase in the in vivo fluorescence per chlorophyll a could be partially attributed to the increased specific absorption coefficient for chlorophyll a; the remainder of the fluorescence increase was related to a decline in photosystem activity. Energy transfer efficiency between light-harvesting pigments appeared to be maintained as cell-nitrogen quota decreased. The decrease in a fluorescence index [(F DCMU-F O)/F DCMU] with nitrogen starvation suggested a decrease in Photosystem II activity. These results imply that decreases in reaction center and/or electron-transport system activity were responsible for the decline in rates of photosynthesis under conditions of notrogen deficiency.  相似文献   

8.
The role of ambient and enhanced ultraviolet-B radiation (UVB; 280 to 315 nm) in a natural sand-associated microbenthic community was studied in a 3-week experiment by incubating intact sediment cores from a shallow bay in an outdoor flow-through system with 27 aquaria. After sampling of initial cores, the remaining cores (one per aquarium) were given one of three treatments: no, ambient, and moderately enhanced UVB, and sampled, nine at a time, after 5, 12, and 19 d. The response of the community was studied by analysing algal and meiofaunal composition and biomass, chlorophyll a content, composition of pigments and fatty acids, and content of UV-absorbing compounds (state variables), as well as carbon fixation and allocation, and bacterial productivity (rate variables). Among rate variables, significant effects of UVB-treatments were found for carbon fixation and allocation, while bacterial productivity was not affected. For state variables, a significant response was observed for the composition of microalgae and fatty acids, and for chlorophyll a content. The effect of treatments was mainly observed as differences in development with time (two-way analysis of variance, treatment × time interaction). Towards the end of the experiment, the no-UVB treatment most often differed from one or both of the two treatments with UVB exposure, the latter showing lower values. There were marked successional changes in the community, irrespective of treatment. The microalgal community changed from being dominated by coccoid cyanobacteria and epipsammic diatoms to a dominance of epipelic diatoms and filamentous cyanobacteria. The pattern of carbon allocation, as well as an increased C/N ratio of the sediment, suggested limitation of growth, perhaps by nutrients, at the end of the experiment. This may possibly have acted synergistically with UVB exposure to create the treatment effects. The new knowledge gained from our experiment is that ambient UVB can exert a stress on the function of sand-associated microbenthic communities in shallow waters and that this effect coincides with structural differences in the community. More experiments in natural or semi-natural systems are needed to allow better prediction of microbenthic community-level responses to UVB. Received: 11 November 1997 / Accepted: 12 June 1998  相似文献   

9.
Phytoplankton samples taken during the spring bloom in the experimental enclosed ecosystem bags at Loch Ewe, Scotland, during 1983 were analysed for carotenoids and chlorophyll compounds using high-performance liquidchromatography (HPLC). Changes in the relative proportions of these pigments were related to day-to-day changes in the composition of the bloom and the physiological state of the algae. There is clear evidence for a change in the chlorophyllide a:chlorophyll a ratio, which reached a maximum as nutrient limitation occurred. No major qualitative changes in the carotenoid components were seen during the bloom; the relative proportion, however, of some carotenoids does provide useful information on the relative abundance of certain algal type in the phytoplankton.  相似文献   

10.
Ultraviolet (UV) spectroscopy is a valid surrogate for monitoring the formation of disinfection by-products (DBPs). Sodium thiosulphate is commonly used to remove disinfectant residual. However, it produces interferences with absorbance in the UV region. Relationship between trihalomethane (THM) formation and differential UV absorbance (−ΔA λ ) was explored in the presence of sodium thiosulphate. Chlorination of two synthetic and five natural waters was carried out. Sodium thiosulphate showed high UV absorption at 254 nm. This effect can be overcome selecting a higher wavelength. Optimum wavelength varied being about 290 nm for fulvic acid and 300 nm for humic acid type natural organic matter. Correlation between THMs formation and −ΔA λ was linear for all the analysed samples. Regression curves do not pass through zero indicating the existence of a threshold absorbance decreasment. Once it is surpassed THM release begins. Chlorination of surface waters showed that the presence of bromide significantly increases THMs vs. −ΔA λ slope. Furthermore, slope decreased with the aromaticity–hydrophobicity of organic matter.  相似文献   

11.
Three marine diatoms, Skeletonema costatum, Chaetoceros debilis, and Thalassiosira gravida were grown under no limitation and ammonium or silicate limitation or starvation. Changes in cell morphology were documented with photomicrographs of ammonium and silicate-limited and non-limited cells, and correlated with observed changes in chemical composition. Cultures grown under silicate starvation or limitation showed an increase in particulate carbon, nitrogen and phosporus and chlorophyll a per unit cell volume compared to non-limited cells; particulate silica per cell volume decreased. Si-starved cells were different from Si-limited cells in that the former contained more particulate carbon and silica per cell volume. The most sensitive indicator of silicate limitation or starvation was the ratio C:Si, being 3 to 5 times higher than the values for non-limited cells. The ratios Si:chlorophyll a and S:P were lower and N:Si was higher than non-limited cells by a factor of 2 to 3. The other ratios, C:N, C:P, C:chlorophyll a, N:chlorophyll a, P:chlorophyll a and N:P were considered not to be sensitive indicators of silicate limitation or starvation. Chlorophyll a, and particulate nitrogen per unit cell volume decreased under ammonium limitation and starvation. NH4-starved cells contained more chlorophyll a, carbon, nitrogen, silica, and phosphorus per cell volume than NH4-limited cells. N:Si was the most sensitive ratio to ammonium limitation or starvation, being 2 to 3 times lower than non-limited cells. Si:chlorophyll a, P:chlorophyll a and N:P were less sensitive, while the ratios C:N, C:chlorophyll a, N:chlorophyll a, C:Si, C:P and Si:P were the least sensitive. Limited cells had less of the limiting nutrient per unit cell volume than starved cells and more of the non-limiting nutrients (i.e., silica and phosphorus for NH4-limited cells). This suggests that nutrient-limited cells rather than nutrient-starved cells should be used along with non-limited cells to measure the full range of potential change in cellular chemical composition for one species under nutrient limitation.Contribution No. 943 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA.  相似文献   

12.
The photosynthetic functionality in chloroplasts in the two sacoglossan molluscs Placida dendritica and Elysia viridis from the Trondheim fjord in Norway was studied. P. dendritica and E. viridis with no functional chloroplasts in their digestive system were introduced to the green macroalgae Codium fragile. Our results showed that P. dendritica was not able to retain functional (photosynthetic) chloroplasts. Transmission electron microscopy (TEM) showed that chloroplasts were directly digested when phagocytosed into the digestive cells. Four stages of chloroplast degradation were observed. A corresponding operational quantum yield of chl a fluorescence (ΦPSII ~ 0) indicated autofluorescence, and the presence of highly degraded chl a supported these observations. In contrast, E. viridis was able to retain functional chloroplasts. For this species it took only 1 week for the chloroplasts inside the digestive cells to acquire the same ΦPSII and light utilisation coefficient (α) as C. fragile kept under the same light conditions. Data for 8 days showed a 2–6-fold increase in the maximum photosynthetic rate (P max) and light saturation index (E k) relative to C. fragile. This increase in available light was probably caused by a reduced package effect in the digestive gland of E. viridis relative to C. fragile, resulting in a partial photoacclimation response by reducing the turnover time of electrons (τ). Isolated pigments from C. fragile compared to E. viridis showed the same levels of photosynthetic pigments (chl a and b, neoxanthin, violaxanthin, siphonaxanthin, siphonein and β,ε-carotene) relative to μg chl a (w:w), indicating that the chloroplasts in E. viridis did not synthesise any new pigments. After 73 days of starvation, it was estimated that chloroplasts in E. viridis were able to stay photosynthetic 5–9 months relative to the size of the slugs, corresponding to an RFC of level 8 (a retention ability to retain functional chloroplasts (RFC) for more than 3 months). The reduction in ΦPSII, P max and α as a function of time was caused by a reduction in chloroplast health and number (chloroplast thylakoid membranes and PSII are degraded). These observations therefore conclude that chloroplasts from C. fragile cannot divide or synthesise new pigments when retained by E. viridis, but are able to partially photoacclimate by decreasing τ as a response to more light. This study also points to the importance of siphonaxanthin and siphonein as chemotaxonomic markers for the identification of algal sources of functional chloroplasts.  相似文献   

13.
Mesoporous nickel oxide (MNO) was synthesized by sol–gel method with saponificated chlorophyll-a (Chl-a) as template and Ni (II) acetate as starting material. XRD, surface area, pore volume, pore diameter and pore size distribution of MNO were determined. It exhibited high surface area and uniform pores with very sharp pore size distribution centered at 3.6 nm. High resolution transmission electron microscope images confirmed the results. MNO showed a high activity toward degradation of phenol at low temperature under atmospheric pressure of oxygen.  相似文献   

14.
Photoadaptations of zooxanthellae living within the deep water coral Leptoseris fragilis taken from the Gulf of Aqaba (Red Sea) were studied. Specimens-collected in summer 1988 between 110 and 120 m depth —were transplanted to 70 and 160 m. At each depth individuals were exposed in their natural growth position (oral side facing the surface) or in a reverse growth position (oral side facing the bottom). After 1 yr of exposure the corals were collected and the zooxanthellae were isolated. As a function of the availability of light with depth and growth position several algal parameters showed changes which are related to photoadaptations. The relatively low density of zooxanthellae of 0.15x106 cellsxcm-2 at a natural growth depth of 116 m decreased to 0.0034x106 cellsxcm-2 (2%) at 160 m in specimens growing with a natural orientation. In corals with a downward-facing oral surface at the same depth (160 m) only degenerated algae could be observed. With respect to depth dependence the volume of the algae decreased from 728 m3 at 116 m to 406 m3 at a depth of 160 m and the content of pigments increased. The augmentation of peridinin per cell was low (two times at 160 m compared to 116 m). Chlorophyll a and in particular chlorophyll c 2 concentrations per cell were enhanced. Compared to natural amounts at 116 m, chl a was five times and chl c 2 eight times higher at 160 m. At all depths the chl c 2 content per cell was higher than for chl a. The formation of chl a/chl c 2 complexes as light harvestor is discussed. Light harvesting, with chl c 2 prevailing may be explained as a special type of chromatic adaptation of L. fragilis in a double sense: (1) in the habitat light short wavelengths predominate. This light can be directly absorbed with pigments such as chl a and chl c 2. (2) Host pigments absorb visible violet light and transform these wavelengths, less suitable for photosynthesis, into longer ones by means of autofluorescence. The emitted longer wavelengths fit the absorption maxima of the algal pigments. Thus the host supports photosynthesis of his symbionts. Corals exposed at 160 m depth with a downward facing oral surface were alive after 1 yr and the host wavelength transforming pigment system was still present, but zooxanthellae were absent or degenerated. The light field at 160 m seems therefore to be critical: the combined photoadaptations of host and symbionts, allowing photosynthesis under barren light conditions, seem to be exhausted. In L. fragilis the photoadaptive strategies of host and symbionts cooperate harmoniously. In addition, the adaptations are interlocked with the particular light situation of the habitat with respect to light quantity and quality. The cooperation of physical and organismic parameters examplifies how evolution and, in particular, coevolution has led to optimal fitness.  相似文献   

15.
The spatiotemporal distributions of major phytoplankton taxa were quantified to estimate the relative contribution of different microalgal groups to biomass and bloom dynamics in the eutrophic Neuse River Estuary, North Carolina, USA. Biweekly water samples and ambient physical and chemical data were examined at sites along a salinity gradient from January 1994 through December 1996. Chemosystematic photopigments (chlorophylls and carotenoids) were identified and quantified using high-performance liquid chromatography (HPLC). A recently-developed factor-analysis procedure (CHEMTAX) was used to partition the algal group-specific chlorophyll a (chl a) concentrations based on photopigment concentrations. Results were spatially and temporally integrated to determine the ecosystem-level dynamics of phytoplankton community-constituents. Seasonal patterns of phytoplankton community-composition changes were observed over the 3 yr. Dinoflagellates reached maximum abundance in the late winter to early spring (January to March), followed by a spring diatom bloom (May to July). Cyanobacteria were more prevalent during summer months and made a large contribution to phytoplankton biomass, possibly in response to nutrient-enriched freshwater discharge. Cryptomonad blooms were not associated with a particular season, and varied from year to year. Chlorophyte abundance was low, but occasional blooms occurred during spring and summer. Over the 3 yr period, the total contribution of each algal group, in terms of chl a, was evenly balanced, with each contributing nearly 20% of the total chl a. Cryptomonad, chlorophyte, and cyanobacterial dynamics did not exhibit regular seasonal bloom patterns. High dissolved inorganic-nitrogen loading during the summer months promoted major blooms of cryptomonads, chlorophytes, and cyanobacteria. Received: 12 September 1997 / Accepted: 12 December 1997  相似文献   

16.
In high-latitude waters such as the Southern Ocean, the primary production of phytoplankton supports the ecosystem. To understand the photo-acclimation strategy of such phytoplankton within cold environments, the vertical distribution profile of photosynthetic pigments was analyzed in the Southern Ocean. Samples were taken along 110°E during the austral summer, and along 150°E and around the edge of the seasonal sea ice of the Antarctic Continent during the austral autumn. Pigment extraction methods were optimized for these samples. The standing crop of chlorophyll a was larger in the region along the edge of the seasonal sea ice than at sampling stations in open ocean areas. Chlorophyll concentration seemed to be dependent on the formation of thermo- and haloclines along the edge of the seasonal sea ice, but not in the open ocean where such clines are less pronounced. The marker pigments fucoxanthin and/or 19′-hexanoyloxyfucoxanthin were dominant at most sampling stations throughout the water column, while other marker pigments such as alloxanthin were quite low. This indicated that diatoms and/or haptophytes were the major phytoplankton in this area. Comparison of the relative ratio of fucoxanthin with that of 19′-hexanoyloxyfucoxanthin allowed some stations to be characterized as either diatom-dominant or haptophyte-dominant. The relative ratio of xanthophyll-cycle pigments (diadinoxanthin plus diatoxanthin) to chlorophyll a was high in surface waters and decreased gradually with depth. This suggests that near the ice edge during summer in the Southern Ocean, both diatoms and haptophytes acclimate to their light environments to protect their photosystems under high-light conditions.  相似文献   

17.
The effect of photosynthetic available radiation (PAR) levels, light quality, ultraviolet (UV) radiation, and temperature on photosynthesis, growth, and chlorophyll fluorescence was evaluated in red and green morphotypes of the rhodophyte Kappaphycus alvarezii (Doty) Doty under controlled conditions. Chlorophyll a and phycoerythrin (PE) levels were similar in the red and green morphotypes cultured under the same conditions, but phycocyanin (PC) and allophycocyanin (APC) levels were 2-fold greater in the green than in the red morphotype. Pigment characterization indicated that the overexpression of PC and APC masked the red pigmentation in the green morphotype. Maximum photosynthesis and photosynthetic efficiency were similar between the two morphotypes assayed at a wide temperature range, which was reflected in the similar growth rates observed in outdoor culture systems. In the green morphotype, photosynthetic efficiency increased 2-fold relative to the red morphotype when assayed with red light (λ > 600 nm), indicating that photosynthetic characteristics are modified as a result of pigment variation in these morphotypes. Such increase in photosynthetic efficiency in the green morphotype, however, did not result in greater growth rates when cultured under white light. Short exposure to high levels of solar radiation (UV-A + UV-B + PAR), and filtered solar radiation (UV-A + PAR or PAR) decreased effective quantum yield (ΔF/F m′) in both morphotypes. The reduction of ΔF/F m′ values in the red and green morphotypes was accounted for by high levels of PAR and not by the UV-A + UV-B + PAR and UV-A + PAR treatments. Photoinhibition caused by UV-A, UV-B, or PAR was completely reversed within 30 h after incubations. Recovery rates from photoinhibition, however, were significantly reduced in the green morphotype when incubated with UV-B radiation. The results here suggest that the overexpression of pigments do not necessarily increase photosynthesis and growth in these morphotypes. Received: 19 June 2000 / Accepted: 28 November 2000  相似文献   

18.
Phytoplankton pigments at a coastal station off Sydney, Australia, were studied by cellulose thinlayer chromatography. The chromatographic procedure distinguished chlorophylls a, b and c, chlorophyllide a, pheophytin a and pheophorbide a, and the major carotenoids carotene, astaxanthin, fucoxanthin, peridinin, diadinoxanthin and neoxanthin. Chlorophyllide a and pheophorbide a were the most significant chlorophyll-a degradation products in the water column, chlorophyllide a coming from chlorophyllase activity of senescent diatoms, and pheophorbide a from faecal pellets of copepods. Chlorophyll c occurred in every sample, even where there was no trace of chlorophyll a. Because of the greater chemical and biological stability of chlorophyll c compared to chlorophyll a, high chlorophyll c:a ratios result from a large proportion of senescent or detrital material in the samples. Determining the position of patches of copepods, diatoms, green algae and dinoflagellates in the water column was easily done by noting the presence of definitive pigments on the chromatograms.  相似文献   

19.
In order to estimate the in situ grazing rates of Salpa thompsoni and their implications for the development of phytoplankton blooms and for the sequestration of biogenic carbon in the high Antarctic, a repeat-grid survey and drogue study were carried out in the Lazarev Sea during austral summer of 1994/1995 (December/January). Exceptionally high grazing rates were measured for S. thompsoni at the onset of a phytoplankton bloom (0.2 to 0.8 μg chlorophyll a l−1) in December 1994, with up to ≃160 μg of plant pigments consumed by an individual salp of 7 to 10 cm length per day. Dense salp swarms extended throughout the marginal ice zone, consuming up to 108% of daily phytoplankton production and 21% of the total chlorophyll a stock. Due to the much faster sinking rates and higher carbon content of salp faecal pellets, the efficiency of downward carbon flux through salps is much higher than through the other major grazers, krill and copepods. S. thompsoni can thus export large amounts of biogenic carbon from the euphotic zone to the deep ocean. With the observed ingestion rates during December 1994, this flux could have attained levels of up to 88 mg C m−2 d−1, accounting for the bulk of the vertical transport of carbon in the Lazarev Sea. However, in January 1995, when phytoplankton concentrations exceeded a threshold level of 1.0 to 1.5 μg chlorophyll a l−1, salps experienced a drastic reduction in their feeding efficiency, possibly as a result of clogging of their filtering apparatus. This triggered a dramatic reversal in the relationship, during which a dense phytoplankton bloom developed in conjunction with the collapse of the salp population. Increases in the biomass and geographic range of the tunicate S. thompsoni have occurred in several areas of the southern ocean, often in parallel with a rise in sea-surface temperature during sub-decadal periods of warming anomalies. Received: 10 August 1997 / Accepted: 21 October 1997  相似文献   

20.
Throughout its geographic range, the temperate-zone anemone Anthopleura elegantissima is the host of one or both of two distinctively different symbiotic microalgae: a dinoflagellate Symbiodinium (zooxanthellae, ZX) and a chlorophyte (zoochlorellae, ZC). Given the broad vertical intertidal and latitudinal range of this anemone, we investigated the role of temperature in determining whether A. elegantissima supports one algal symbiont over the other and whether temperature regulates the observed distributions of natural populations of ZX and ZC. Temperature appears to be a key factor in regulating both the photophysiology and metabolism of this algal–cnidarian association. In anemones containing ZX, neither algal densities nor chlorophyll content varied with temperature (6–24 °C); in contrast, anemones with ZC displayed reduced densities and chlorophyll content at the highest temperature treatment (24 °C). Both ZX and ZC photosynthetic rates were directly related to temperature, as were anemone respiration rates. The higher photosynthetic rates, maintenance of a stable algal density and chlorophyll content, and higher potential contribution of algal carbon toward animal respiration (CZAR) suggest that the ZX are the more viable symbiont as temperature increases, but we suggest alternative reasons why ZC are preserved in this symbiotic association. Elevated temperatures reduce ZC densities and chlorophyll, suggesting that higher temperatures affect this relationship in a negative fashion, presumably due to a higher cost of maintaining ZC by the association; alternatively, these costs may be affiliated with the deterioration of the ZC themselves. These results suggest that temperature may be one of the most significant environmental parameters that sets the intertidal microhabitat and latitudinal distribution patterns of the two algal taxa observed in the field. Received: 2 November 1998 / Accepted: 25 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号