首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
In comparison with several other reported inorganic sorbents, Camellia tree leaf and primary sludge obtained from a settling tank as a pretreatment to the activated sludge system in a Hong Kong sewage treatment plant were evaluated for removing Cu(II) from aqueous solutions. Experimental data were modeled by the Langmuir isotherm equation to estimate the maximum sorption capacity (qmax). Results show that, at pH 5.6, biosorbents, Camellia tree leaf and primary sludge in particular, exert higher sorption capacities (qmax > 40 mg g−1) than inorganic sorbents, Na-montmorillonite (qmax = 33.3 mg g−1), fly ash (qmax = 18.8 mg g−1), and goethite powder (10.3 mg g−1). Furthermore, a pseudo second-order kinetic model was found to properly describe the experimental data for both bio- and inorganic sorbents. Sorption of Cu(II) on the Camellia tree leaf and primary sludge were much faster than that on the inorganic sorbents. In addition, desorption tests revealed that the desorption capacities of the two biomaterials are higher than the other selected materials; and much more Cu(II) can be retrieved from the Cu(II)-loaded biosorbents. Finally, increasing solution pH was found to greatly increase qmax and accelerate sorption processes.  相似文献   

2.
The ability of free and polysulphone immobilized biomass of Arthrobacter sp. to remove Cu2+ ions from aqueous solution was studied in batch and continuous systems. The Langmuir and Freundlich isotherm models were applied to the data. The Langmuir isotherm model was found to fit the sorption data indicating that sorption was monolayer and uptake capacity (Qo) was 175.87 and 158.7 mg/g for free and immobilized biomass respectively at pH 5.0 and 30 °C temperature, which was also confirmed by a high correlation coefficient, a low RMSE and a low Chi-square value. A kinetic study was carried out with pseudo-first-order reaction and pseudo-second-order reaction equations and it was found that the Cu2+ uptake process followed the pseudo-second-order rate expression. The diffusivity of Cu2+ on immobilized beads increased (0.402 × 10−4 to 0.435 × 10−4 cm2/s) with increasing concentration from 50 to 150 mg/L. The maximum percentage Cu2+ removal (89.56%) and uptake (32.64 mg/g) were found at 3.5 mL/min and 20 cm bed height. In addition to this the Bed Depth Service Time (BDST) model was in good agreement with the experimental data with a high correlation coefficient (>0.995). Furthermore, sorption and desorption studies were also carried out which showed that polysulphone immobilized biomass could be reused for up to six sorption–desorption cycles.  相似文献   

3.
In the present study, an adsorbent was prepared from tamarind seeds and used after activation for the removal of Cr(VI) from aqueous solutions. The tamarind seeds were activated by treating them with concentrated sulfuric acid (98% w/w) at a temperature of 150 °C. The adsorption of Cr(VI) was found to be maximum at low values of initial pH in the range of 1–3. The adsorption process of Cr(VI) was tested with Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized isotherm models. Application of the Langmuir isotherm to the system yielded a maximum adsorption capacity of 29.7 mg/g at an equilibrium pH value ranging from 1.12 to 1.46. The adsorption process followed second-order kinetics and the corresponding rate constants obtained were 2.605 × 10−3, 0.818 × 10−3, 0.557 × 10−3 and 0.811 × 10−3 g/mg min−1 for 50, 200, 300 and 400 mg/L of initial Cr(VI) concentration, respectively. The regenerated activated tamarind seeds showed more than 95% Cr(VI) removal of that obtained using the fresh activated tamarind seeds. A feasible solution is proposed for the disposal of the contaminants (acid and base solutions) containing high concentrations of Cr(VI) obtained during the regeneration (desorption) process.  相似文献   

4.
Three materials of different structure, sepiolite, saponite and bentonite, assayed as supports for the microorganisms effecting anaerobic digestion, were found to behave differently towards cheese whey wastewater from a kinetic point of view. Assuming the overall anaerobic digestion process to conform to first-order kinetics, the apparent kinetic constant for the digester including sepiolite as support was 2.44 days−1, while that of the digester using the saponite and bentonite support was 2.20 days−1 and 0.70 days−1, respectively. Thus, the support used to immobilize the microorganisms that mediate the process had a marked influence on the constant. This was found significant at 95% confidence level. The yield coefficients, Yp/s, were 0.336, 0.329 and 0.311 litres CH4 STP/g COD for the sepiolite, saponite and bentonite supports, respectively.  相似文献   

5.
The equilibrium sorption of copper ions from aqueous solution using a new adsorbent, palm kernel fibre, has been studied. Palm kernel fibre is obtained in large amounts as a waste product of palm oil production. Batch equilibrium studies were carried out and system variables such as solution pH, sorbent dose, and sorption temperature were varied. The equilibrium sorption data was then analyzed using the Langmuir, Freundlich, Dubinin–Radushkevich (D–R) and Temkin isotherms. The fit of these isotherm models to the equilibrium sorption data was determined, using the linear coefficient of determination, r2, and the non-linear Chi-square, χ2 error analysis.The results revealed that sorption was pH dependent and increased with increasing solution pH above the pHPZC of the palm kernel fibre with an optimum dose of 10 g/dm3. The equilibrium data were found to fit the Langmuir isotherm model best, with a monolayer capacity of 3.17 × 10?4 mol/g at 339 K. The sorption equilibrium constant, Ka, increased with increasing temperature, indicating that bond strength between sorbate and sorbent increased with temperature and sorption was endothermic. This was confirmed by the increase in the values of the Temkin isotherm constant, B1, with increasing temperature. The Dubinin–Radushkevich (D–R) isotherm parameter, free energy, E, was in the range of 15.7–16.7 kJ/mol suggesting that the sorption mechanism was ion exchange. Desorption studies showed that a high percentage of the copper was desorbed from the adsorbent using acid solutions (HCl, HNO3 and CH3COOH) and the desorption percentage increased with acid concentration. The thermodynamics of the copper ions/palm kernel fibre system indicate that the process is spontaneous and endothermic.  相似文献   

6.
A method for quality screening is suggested to detect volatile impurities in inorganic coagulants that are used for drinking water treatment. Static headspace gas chromatography with mass spectrometry detection (HS–GCMS) is sensitive and selective to detect volatiles in low concentrations. This study has discovered that volatile organic impurities are detectable in ferric and aluminium-based coagulants which are used for drinking water treatment. For ferric chloride, 2-propanol was detected at a level of 17–24 μg ml−1, acetone at 0.7–1.7 μg ml−1, 1,1,1-trichloroacetone at 0.02–0.04 μg ml−1, trichloromethane at 0.01–0.02 μg ml−1 and toluene at 0.01–0.12 μg ml−1. For ferric chloride sulfate, acetone was detected at a level of 0.12 μg ml−1, 1,1,1-trichloroacetone at 0.06–0.08 μg ml−1, trichloromethane at 0.13–0.23 μg ml−1, bromodichloromethane at 0.04–0.06 μg ml−1 and dibromochloromethane at 0.04–0.05 μg ml−1. For aluminium hydroxide chloride, only trichloromethane was detectable, but below the method detection limits (MDL). Although the concentrations of these impurities in commercial coagulants are low, this observation is important and should have impact on water industries for them to pay attention to the chemicals they are using for drinking water production.  相似文献   

7.
New comprehensive numerically solved 1D and 2D absorption rate/kinetics models have been developed, for the first time, to interpret the experimental kinetic data obtained with a laminar jet apparatus for the absorption of carbon dioxide (CO2) in CO2 loaded mixed solutions of mixed amine system of methyldiethanolamine (MDEA) and monoethanolamine (MEA). Three MDEA/MEA weight ratios ranging from 27/03 to 23/07, over a concentration range of 2.316–1.996 kmol/m3 for MDEA and of 0.490–1.147 kmol/m3 for MEA were studied. The models take into account the coupling between chemical equilibrium, mass transfer, and the chemical kinetics of all possible chemical reactions involved in the CO2 reaction with MDEA/MEA solvent. The partial differential equations of the 1D model were solved by two numerical techniques; the finite difference method (FDM) based on in-house coded Barakat–Clark scheme and the finite element method (FEM) based on COMSOL software. The FEM comprehensive model was then used to solve the set of partial differential equations in the 2D cylindrical coordinate system setting. Both FDM and FEM produced very accurate results for both the 1D and 2D models, which were much better than our previously published simplified model. The reaction rate constant obtained for MEA blended into MDEA at 298–333 K was kMEA = 5.127 × 108 exp(−3373.8/T). In addition, the 2D model, for the first time, has provided the concentration profiles of all the species in both the radial and axial directions of the laminar jet, thereby enabling an understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed amines occur.  相似文献   

8.
This paper discusses the adsorption capacity of silica gel sludge for phenol removal from aqueous solution. Kinetic experiments showed that phenol adsorption was completed after 2 h. Adsorption isotherms were measured for phenol from aqueous solution onto silica gel sludge under various pHs and temperatures. Results showed that the adsorption capacities for phenol was increased as pH decreased from 6.5 to 2. Temperature also was found to affect the adsorption isotherm. As temperature increases from 30 to 50°C, the adsorption capacity increases. The adsorption equilibrium of phenol on silica gel sludge was described by the linear Freundlich and Langmuir models. Furthermore, results showed that the isotherm parameters fit both linearized Langmuir and Freundlich adsorption isotherms. The Freundlich and Langmuir parameters at optimum pH was found as K f=2.89, 1/n=0.23 and K d=22.0, q m=7.98, respectively. Whereas, for those at optimum temperature it was observed as K f=2.87, 1/n=0.16 and K d=20.93, q m=7.91, respectively.  相似文献   

9.
The rice fields, depleted of O2, contain large amount of moisture and organic substrates to provide an ideal anaerobic environment for methanogenesis and are one of the principal anthropogenic sources of methane. In order to mitigate this emission Alternative Electron Acceptors (AEA) were altered in the soil. The experiments were carried out in four seasons at the site of Balarampur, near Baruipur, South 24 Parganas, West Bengal, namely September–December, 2005 (Cultivar: Sundari), February–May, 2006 (Cultivar: Sundari), September–December, 2006 and February–May, 2007 (Cultivar: Swarna-Pankaj). The seasonal average methane flux (Fe treated), for the cultivar type “Sundari” (season: September–December, 2005), is 4.41 t ha−1, as compared to the value of 6.40 t ha−1 for the untreated soil. Similarly for February–May, 2006, the seasonal average methane flux (Fe treated) is 5.52 t ha−1, whereas the untreated flux is 5.69 t ha−1. In the third and fourth seasons we had two treatments with Ammonium Thiosulphate and Ferric Hydroxide. The seasonal average methane flux (treatment: Ammonium Thiosulphate) is 4.35 t ha−1 and 5.41 t ha−1 respectively, whereas for the ferric hydroxide treated soil it is 4.35 t ha−1 and 6.14 t ha−1 respectively. The properties related to the nutrient quality of the harvested paddy seeds supplement these results.  相似文献   

10.
Summary The ability of fly ash to remove Zn(II) from water by adsorption has been tested at different concentrations, temperatures and pH of the solution. It was found that low adsorbate concentration, small particle size of adsorbent and higher temperature favoured the removal of Zn(II) from aqueous solution. The Langmuir isotherm was used to represent the equilibrium data at different temperatures. The apparent heat of adsorption has been found to be 17.325 Kcal mol–1, which indicates the process to be endothermic. The uptake of Zn(II) is diffusion controlled and the mass transfer coefficient is 3.56 × 10–5 cm s –1.The maximum removal was noted at pH 7.5. Dr V.N. Singh is Professor and Head of the Department of Applied Chemistry, Dr A.K. and Prof. D.P. Singh are members of the Department of Mining Engineering; all are situated in the Institute of Technology at Banaras Hindu University.  相似文献   

11.
Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl concentration points to denitrification, low NO3 concentration and low Cl chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.  相似文献   

12.
The water disinfecting behavior of silver-modified clinoptilolite–heulandite rich tuff (ZSAg) as an antibacterial agent against coliform microorganisms from water in a continuous mode was investigated. Silver recovery from the disinfected effluents by the sodium-modified clinoptilolite–heulandite rich tuff (ZSNa) was also considered. Escherichia coli (ATCC 8739) and total coliform microorganisms, as indicators of microbiological contamination of water, were chosen to achieve the disinfection of synthetic wastewater or municipal wastewater. Ammonium (NH4+) and chloride (Cl) ions were added to the synthetic wastewater as an interfering chemical species on the disinfection processes. The antibacterial activity of the ZSAg as a bactericide was measured by the coliform concentration as evaluated by the APHA method. The amount of silver in the disinfected effluents was determined using atomic absorption spectroscopy. The inactivation of the ZSAg was calculated from the breakthrough curves based on the model reported by Gupta et al. It was found that when the silver concentration in the effluent is less than 0.6 μg/mL, the bacterial survival percentage increased and the volume of disinfected water diminished. The total silver amounts found in the effluent at the end of the disinfection processes varied depending on the water treated (synthetic or municipal wastewater). The presence of NH4+ ions in synthetic wastewater influent notably improved the disinfected water volume (zero NVC/100 mL), in comparison to the disinfection of the same influent without NH4+ ions. A contrary water disinfection behavior was observed in the presence of Cl ions. The silver recovery does not depend on the mass of the sodium zeolitic bed according with the wastewater to be treated (synthetic or municipal wastewater) and the presence of NH4+ or Cl ions in the influent also influenced the silver recovery from wastewater. The ZSNa did not have antibacterial activity. Therefore the amount of bactericide agent (silver-modified natural zeolite), coliform microorganisms from water (E. coli or consort of coliform microorganisms) as well as the water quality (synthetic wastewater or municipal wastewater) influenced both the disinfection process and the silver recovery in a column system.  相似文献   

13.
Studies have been made of the growth characteristics of water hyacinth, Eichhornia crassipes (Mart.) Solms, and its ability to remove N, P and K, in a secondary settling pond of a small secondary sewage treatment plant serving both the academic and residential blocks of the Swire Marine Laboratory, University of Hong Kong. The treatment plant consists of, in series, a primary settling tank, a trickling filter compartment and a secondary settling pond from which part of the treated wastewater is recycled to the primary settling tank while the remaining effluent (1 to 2 m3 daily) mixes with and hence is diluted by the outflowing seawater from the aquarium system of the Swire Marine Laboratory before discharge to the sea. Samples of wastewater have been taken regularly from the primary sedimentation pond, the outflow of the trickling filter, the secondary settling pond and the effluent of the treatment plant (before mixing with aquarium outflow) since January, 1992. Physical, chemical and biological characteristics of the samples have been determined and are typical of secondary effluents, with a mean pH of about 7.5, total solids 1200 mg L−1, suspended solids 45 mg L−1, conductivity 2000 μS cm−1, salinity 1 ppt, dissolved oxygen 2 mg L−1, BOD5 45 mg L−1, Kjeldahl-N 30 mg L−1, NH4,-N 25 mg L−1, NO3-N 4 mg L−1, total P 10 mg L−1, K 35 mg L−1 and total coliforms of less than 105 colonies 100 ml−1.Water hyacinth plants have been stocked in the secondary settling pond as an integral part of the treatment plant so as to improve the quality of, as well as to retrieving and recycling nutrient elements from, the wastewater. The plants are periodically harvested to maintain an active growing crop. The growth rate, standing crop biomass, tissue nutrient composition, nutrient storage and accumulation rate of two growth cycles, one from February 25 to March 18 (mean temperature 17.6°C) and the other from 22 April to 12 May (24.8°C) are reported. The water hyacinth assumed a relatively high standing crop biomass of 10 kg m−2 (5 to 6 t DM ha−1), and growth rates of 48 and 225 g m−2 day−1, respectively, for the first and second growth period. Nutrient storage capacities were relatively high, at about 20, 7.5 and 16.5 g m−2 for N, P and K, respectively. The nutrient composition was very high, reaching 5.42% for N, 1.97 for P, and 4.57 for K. Both the stem and lamina accumulated high levels of N, while the petiole had the highest level of P and K. Apart from nutrient removal, the water hyacinth also helped to decrease the suspended solids, BOD5 value and total coliforms of the wastewater.It is concluded that water hyacinth improves the quality of wastewater in such small-scale sewage treatment plants and it is recommended that frequent harvests of water hyacinth would increase the treatment efficiency, especially during the active growing season with high temperatures coupled with intense solar radiation.  相似文献   

14.
Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions.The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio.Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 °C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others.Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.  相似文献   

15.
Hobart's bushlands consist of eight distinct vegetation types ranging from open woodland to wet forest. Fine fuel accumulation characteristics are distinctive across this range of vegetation types and mostly seem to conform to the function Wt = Wss(1−ekt)+ l·92(ekt), although there is considerable scatter around the lines of best fit in many types.This information contributes to determining the applicability and appropriate frequency of controlled burning as a means of reducing fuels to protect life and property from wildfire. Regular burning of grassy vegetation should ensure relatively safe zones within the urban/bush matrix. It is likely that burning heathy forest types at frequencies that would ensure safe fuel loads would be ecologically detrimental. It would be difficult and futile to use fuel reduction burning in wet forest types as a means of protecting life and property. The fuel accumulation characteristics and the existing ecological knowledge of Allocasuarina verticillata shrubland suggests that fuel reduction burning would be counter-productive in this vegetation type.  相似文献   

16.
The microbiological impact of a detergent and soap industries effluent on Clarias gariepinus was assessed under laboratory conditions. The heterotrophic bacterial count obtained from fish surfaces ranged from 1.2 × 102−2.0 × 102cfu/ml amongst the control, while values of 4.8× 106−8.6 × 106 cfu/ml were obtained for the experimental fish exposed to the industrial effluent (0.025 ppm). The fungal count for the controls ranged from 1.2× 102−1.2 × 103 cfu/ml; while a range of 1.0 × 106−2.0 × 106 was obtained for the fish exposed to the industrial effluent. While twelve bacterial species were isolated from the fish exposed to the industrial effluent, only two were isolated from the parts of the control fish used in the study. The bacterial species are those in the genera Staphylococcus, Proteus, Streptococcus, Micrococcus, Bacillus, Pseudomonas, Serratia, Enterobacter, and Escherichia. The fungal isolates include Saccharomyces, Aspergillus, Rhodosporium, Candida, Alternaria, and Fusarium. The resistance of the bacterial isolates to the commonly used antibiotics showed that 100% were resistant to Augmentin, Amoxycillin and Cloxacillin, 85.71% to Tetracycline, 80.95% to Cotrimoxazole, 71.43% to Erythromycin, 33.33% to Chloramphenicol, and 28.57% to Gentamicin. Among the eight antibiotics tested, five patterns of multiple drug resistance were obtained, with the number of the antibiotics ranging from 4–8. The public health implications of these observations are discussed.  相似文献   

17.
Lead levels in different environmental media (soil, grass leaves, water, ceramics, pencil, paint, crayons and cosmetics) were determined to assess the major sources of lead exposure in Thohoyandou, South Africa. Soil and plant leaves were used as indicators of Pb pollution from vehicle exhaust emissions. After digestion with concentrated acids (HNO3, HCl and HClO4) Pb concentrations were determined in triplicate using a flame atomic absorption spectrometer. The mean Pb concentrations at the kerb of selected busy roads were 205.5 ± 90, 273.0 ± 90 and 312.8 ± 81 μg g−1 and 154.7 ± 67, 182.9 ± 76 and 240.6 ± 66 μg g−1 for soil and plant leaves (dry weight) respectively. These concentrations were substantially higher than the values found on soils 50 m away from the roads (97.4 ± 11 μg g−1). Pb concentrations in plants collected further away from the road (50 m) were substantially lower (71.8 ± 9.0 μg g−1). The observed levels on soil are lower than the UK critical value of 500 μg g−1 for gardens and allotments; and 2000 μg g−1 for parks and open space as well as the Canadian values for agricultural (375 μg g−1), residential (500 μg g−1 and industrial (1000 μg g−1). From these data it was clear that Pb concentrations in soil samples were substantially higher than the levels obtained for plant leaves. The Pb levels in green crayons, blue crayons, pencils (from China & Germany), were 10650 ± 75.2, 8200 ± 52.4, 1160 ± 50.2, 79 ± 10.1 μg g−1 for the inner contents; and 4870 ± 58.1, 5650 ± 55.5, 1950 ± 46.6, 60 ± 12.9 μg g−1 for the outer surface paint respectively. The ceramics showed Pb levels of 630 ± 50.3 μg g−1 (saucer) and 560 ± 32.2 μg g−1 (cup), while the inner contents and outer surface paint showed 480 ± 32.4 and 318 ± 21.2 μg g−1 of Pb respectively. Early morning tap water flush gave a Pb level of 20.6 ± 5.6 μg Pb l−1. This value is higher than the WHO and FDA maximum permissible concentrations of 10 μg l−1 and 15 μg l−1 respectively.  相似文献   

18.
The Sequencing Batch Reactor (SBR) system employing activated sludge process is an alternative wastewater treatment technology. A cycle of the conventional SBR system generally consists of five periods, with complete aeration during the React period to oxidize the organic matter and nitrify the ammonium-nitrogen of wastewater. Laboratory-scale reactors were used to evaluate the feasibility of incorporating alternative aerobic-anoxic-aerobic stages within the React period for simultaneous removal of organic matter, N and P. Two cycles of SBR process per day were maintained.Under the operation strategy of 0.75-h fill, 8-h react (with continuous aeration), 3.25-h settle, draw and idle periods, the treatment performance became consistent after running the system for two to four cycles (1–2 days). The percentages of both BOD5 and COD removal were around 94% from Cycle 2 onwards, the BOD5 content dropped from initial 251 mg L−1 to less than 14 mg L−1 in the final effluent. A steady nitrification (about 97%) was obtained from Cycle 4 onwards, with 1 mg NH4+-N L−1 and 25 mg NO3-N L−1 present in the final effluent. This suggested that the time required for SBR system to acclimate and reach an equilibrium state was relatively short when compared with the time needed for continuous flow activated sludge system. The findings also show that 4-h aeration during the react period was long enough to achieve more than 90% nitrification. With the incorporation of a 3-h anoxic stage after the initial 4-h aeration of the react period, a satisfactory denitrification process was observed, with nitrate level dropped from 27 to around 8 mg L−1 within 3 h. The second aeration stage did not cause significant change in wastewater nitrogen content. The wastewater phosphate content declined rapidly during the initial 4-h aeration and P-release was not observed during the anoxic stage. A slight reduction of P was found in the second aeration stage suggesting that more P-uptake occurred in this stage. A 12-h cyclic SBR system with the incorporation of 4-h aerobic, 3-h anoxic and final 1-h aerobic stages into the 8-h react period was demonstrated to be able to remove C, N and P simultaneously.  相似文献   

19.
Two acrylic adsorbents with different morphological structures and bearing amidoethylenamine and thiol groups were obtained and used for platinum sorption from chloride solution by the batch method. Physico-chemical parameters that influence adsorption such as initial Pt(IV) concentration, stirring time, pH, and adsorbent amount were investigated. The thermodynamic parameters of Pt(IV) sorption on the synthesized adsorbent were also evaluated based on Langmuir and Freundlich isotherms. Thermodynamic parameters estimated from Langmuir constants indicated that the adsorption is spontaneous, exothermic and there is a disordered state at the molecular level. The models used to analyze the sorption rate led to the conclusion that the most important step in the sorption of Pt(IV) could be both particle diffusion and chemical reaction of [PtCl6] with amine functional groups. Thus, both the ion exchange and complex formation mechanisms can occur via nitrogen atoms in the recovery of Pt(IV) on the studied adsorbent.  相似文献   

20.
We investigated the influence of long-term (56 years) grazing on organic and inorganic carbon (C) and nitrogen (N) contents of the plant–soil system (to 90 cm depth) in shortgrass steppe of northeastern Colorado. Grazing treatments included continuous season-long (May–October) grazing by yearling heifers at heavy (60–75% utilization) and light (20–35% utilization) stocking rates, and nongrazed exclosures. The heavy stocking rate resulted in a plant community that was dominated (75% of biomass production) by the C4 grass blue grama (Bouteloua gracilis), whereas excluding livestock grazing increased the production of C3 grasses and prickly pear cactus (Opuntia polycantha). Soil organic C (SOC) and organic N were not significantly different between the light grazing and nongrazed treatments, whereas the heavy grazing treatment was 7.5 Mg ha–1 higher in SOC than the nongrazed treatment. Lower ratios of net mineralized N to total organic N in both grazed compared to nongrazed treatments suggest that long-term grazing decreased the readily mineralizable fraction of soil organic matter. Heavy grazing affected soil inorganic C (SIC) more than the SOC. The heavy grazing treatment was 23.8 Mg ha–1 higher in total soil C (0–90 cm) than the nongrazed treatment, with 68% (16.3 Mg ha–1) attributable to higher SIC, and 32% (7.5 Mg ha–1) to higher SOC. These results emphasize the importance in semiarid and arid ecosystems of including inorganic C in assessments of the mass and distribution of plant–soil C and in evaluations of the impacts of grazing management on C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号