首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overview.  相似文献   

2.
The degradation of cellulosic materials, differing mainly in the degree of polymerization and the number of reducing end groups, was studied under the alkaline conditions similar to those existing in a cementitious repository for low- and intermediate-level radioactive waste (pH 13.3, T = 25°C). The kinetics of alkaline degradation (peeling-off reaction) were studied and the data analyzed by the model of Haas et al. [13]. The observed kinetic parameters for the propagation reaction and overall stopping reaction were compared with literature data. Although measured under different experimental conditions, literature data and data from this study show a consistent picture. Differences in the extent of degradation observed for the different cellulosic materials could be satisfactorily explained by differences in reducing end group content and, consequently, by differences in the degrees of polymerization. Besides the number of reducing end groups, the degree of amorphousness also plays an important role. The main degradation products formed under the experimental conditions used are - and -(gluco)isosaccharinic acid. This is in agreement with many other studies on alkaline degradation of cellulose. The two isomers are formed in roughly equal amounts.  相似文献   

3.
The behaviour of three organic ligands in suspensions of fresh and degraded hydrated ordinary Portland cement pastes (HCP) has been investigated. EDTA arises as a decontamination product whilst ISA (isosaccharinic acid) is a main degradation product of cellulose. GLU (gluconic acid) is used as a retarding organic admixture in concrete. The affinity of EDTA, ISA and GLU with HCP increases with the degradation state. At long contact times, ISA and GLU desorbed from HCP, perhaps as a result of carbonation. Their influence on the uptake of selenium (as SeO3(2-)) on HCP has been studied as a function of time, addition order and HCP degradation state. The sorption study of Se(IV) also shows a positive effect of the HCP degradation with R(d)=120 mLg(-1) for fresh HCP and 1000 mLg(-1) for degraded HCP. The addition order of Se(IV) and EDTA or ISA is important as pre-equilibration of HCP with either EDTA or ISA drastically decreases the uptake of Se(IV) to 10-30 mLg(-1). Mixing of cement with GLU seems to reduce the strong competitive effect of other organic compounds on Se(IV) sorption.  相似文献   

4.
The standard test method ASTM D 5988-96 for determining the degree and rate of aerobic biodegradation of plastic materials in contact with soil was applied to poly(3-hydroxybutyrate) and poly(-caprolactone). The method proved to be reliable and supplied reproducible measurements of CO2 production, provided potassium (instead of barium) hydroxide was used as a trapping solution. The trends of CO2 evolution, as a function of time, observed for the degradation of polymer powders in soil are similar to those predicted by simple first order kinetics in solution. The experimental data are described by a Michaelis–Menten type model, which accounts for the heterogeneity of the polymer-soil system. The kinetic equation deduced predicts the degradation rate to the proportional to the exposed polymer surface area.  相似文献   

5.
In the production of leather the main waste that remains after splitting of limed hides before tanning is the lowest layer of the skin together with the underlying fatty tissue (subcutis). It is characterized by a very high water content (up to 870 g kg−1) and a balanced content of protein (40–60 g kg−1 of the dry mass), fat (10–20 g kg−1) of the dry mass) and carbohydrates. The object of this work was to elaborate a method to process this waste into useful products. The treatment proposed involves washing to remove the inorganic salts, separation of fat and extraction of collagen in hot water solution and additional extraction of protein from the insoluble residue after hydrolysis with alkaline proteinase. This results in the isolation of three fractions: fat—cattle tallow (4–12% of the total mass of the initial material), collagen hydrolysate—glue (5–10%) and protein concentrate for fodder (1–3% yield). Up to 95% of the protein in the initial material was extracted. Further purification of the collagen hydrolysate fraction into edible gelatin was achieved. The proposed method is applicable to every leather factory.  相似文献   

6.
The observed temperatures in different landfills are used to establish a number of idealized time–temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 °C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 °C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time–temperature history examined. The range illustrates the important role that time–temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.  相似文献   

7.
秦聪丽  傅吉全 《化工环保》2016,36(3):312-316
采用银杏叶和桑叶提取液制备了改性类Fenton反应催化剂并进行了表征分析,研究了溶液初始p H、反应温度、催化剂加入量、甲基橙初始质量浓度等因素对甲基橙降解率的影响,同时考察了催化剂的重复使用效果。表征结果表明:制备出的催化剂为Fe_2O_3和Fe OOH的混合物;桑叶改性催化剂的粒径分布较银杏叶改性催化剂均匀,粒径较小,比表面积较大。实验结果表明:在初始p H为6.23、反应温度60℃、催化剂用量1 g/L、甲基橙初始质量浓度100 mg/L的条件下,银杏叶改性催化剂的甲基橙降解率为99.40%,桑叶改性催化剂的甲基橙降解率为99.96%;碱性条件下,甲基橙降解率仍接近100%,扩宽了反应的p H适用范围,为碱性条件下处理偶氮染料提供了新思路;催化剂重复使用6次之后,甲基橙降解率仍可达到99%。根据反应前后溶液的紫外-可见吸收光谱,初步探讨了降解机理。  相似文献   

8.
The concentration of water-soluble organic nitrogen (WSON) in precipitation has been measured at seven sites across the United Kingdom, over a period of 1–2 years, using protocols developed in a pilot study. Samples were collected over 1–2 weeks in continuously open funnels made of stainless steel, draining to a glass bottle, and were preserved during and after collection by the addition of thymol. After chemical analysis, samples were excluded from the long-term average if they showed signs of contamination (significant concentrations of K+ or PO4 3–). Two methods of measuring total dissolved N were used, persulphate oxidation and high-temperature chemiluminescence. The latter generally gave the larger values, and has been used to asses the organic component of dissolved N. The long-term data set confirms the original results from the pilot study - organic N contributes between 24 and 40% to the total annual wet deposition of dissolved N across the United Kingdom. The fraction of WSON was greatest at western sites, and was strongly correlated with ammonium concentrations. However, the seasonal pattern across all sites showed a late spring maximum for ammonium and nitrate, but a late summer maximum for WSON. The magnitude of the contribution of WSON to wet-deposited N has implications for the setting and assessment of critical loads for N deposition.  相似文献   

9.
In this paper, we study and quantify pollutant concentrations after long-term leaching at relatively low flow rates and residual concentrations after heavy flushing of a 0.14 m3 municipal solid waste sample. Moreover, water flow and solute transport through preferential flow paths are studied by model interpretation of experimental break-through curves (BTCs), generated by tracer tests. In the study it was found that high concentrations of chloride remain after several pore volumes of water have percolated through the waste sample. The residual concentration was found to be considerably higher than can be predicted by degradation models. For model interpretations of the experimental BTCs, two probabilistic model approaches were applied, the transfer function model and the Lagrangian transport formulation. The experimental BTCs indicated the presence of preferential flow through the waste mass and the model interpretation of the BTCs suggested that between 19 and 41% of the total water content participated in the transport of solute through preferential flow paths. In the study, the occurrence of preferential flow was found to be dependent on the flow rate in the sense that a high flow rate enhances the preferential flow. However, to fully quantify the possible dependence between flow rate and preferential flow, experiments on a broader range of experimental conditions are suggested. The chloride washout curve obtained over the 4-year study period shows that as a consequence of the water flow in favoured flow paths, bypassing other parts of the solid waste body, the leachate quality may reflect only the flow paths and their surroundings. The results in this study thus show that in order to improve long-term prediction of the leachate quality and quantity the magnitude of the preferential water flow through a landfill must be taken into account.  相似文献   

10.
For characterisation of landscapes in north-eastern Estoniaaffected by alkaline oil shale fly ash and cement dust the zonation-method based on average annual (C y) and short-termconcentrations of pollutants in the air was used, as well as on deposition loads of dust and Ca2+. In the overground layer of atmosphere the zones with different air pollution loads were distinguished. A comparative analysis of pollution zones characteristics and biomonitoring data revealed that for sensitive lichen the dangerous level of alkaline dust in the air, introducingthe degradation of Sphagnum sp. at the level of C y of dust 10–20 g m-3 and at 0.5–1 hr maximums 100–150 g m-3. For Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) this limited concentration (decline of growth parameters) of cement dust is correspondingly following: 30–50 g m-3 and 150–500 g m-3, in case of fly ash the limit level of C y amounting 100 g m-3. Daily deposition load of Ca2+ should not exceed approximately 4.5–15 mg m-2 for lichen; for conifers the harmful pollution load is higher – >22 mg m-2.  相似文献   

11.
Application of Cellulose Microfibrils in Polymer Nanocomposites   总被引:1,自引:0,他引:1  
Cellulose microfibrils obtained by the acid hydrolysis of cellulose fibers were added at low concentrations (2–10% w/w) to polymer gels and films as reinforcing agents. Significant changes in mechanical properties, especially maximum load and tensile strength, were obtained for fibrils derived from several cellulosic sources, including cotton, softwood, and bacterial cellulose. For extruded starch plastics, the addition of cotton-derived microfibrils at 10.3% (w/w) concentration increased Young’s modulus by 5-fold relative to a control sample with no cellulose reinforcement. Preliminary data suggests that shear alignment significantly improves tensile strength. Addition of microfibrils does not always change mechanical properties in a predictable direction. Whereas tensile strength and modulus were shown to increase during addition of microfibrils to an extruded starch thermoplastic and a cast latex film, these parameters decreased when microfibrils were added to a starch–pectin blend, implying that complex interactions are involved in the application of these reinforcing agents.  相似文献   

12.
采用化学沉淀法(两步法)制备了TiO_2-Ag_3PO_4复合光催化剂,考察了该光催化剂紫外光催化降解阳离子染料番红花红T(简称ST)的性能。实验结果表明:在TiO_2-Ag_3PO_4投加量0.7 g/L,初始ST质量浓度70 mg/L、不调节溶液pH的条件下,紫外光照射35 min时的ST降解率高达97.9%;TiO_2-Ag_3PO_4复合光催化剂的光催化性能明显优于单一光催化剂Ag_3PO_4和TiO_2,同时也明显优于Ag-AgCl/Ag_3PO_4复合光催化剂;避光条件下反应40 min,TiO_2-Ag_3PO_4对ST的吸附量仅为2.3 mg/g;TiO_2-Ag_3PO_4在室内自然光下也具有一定的光催化活性;TiO_2-Ag_3PO_4的光催化活性在酸性条件下要优于碱性条件;TiO_2-Ag_3PO_4重复使用5次后,其光催化活性无明显下降,稳定性较好。  相似文献   

13.
Long-chain fatty acid carbohydrate esters (FACE) were synthesized by the acid chloride-pyridine reaction to different degrees of substitution (DS). The hydrolyzed soybean oil was used as the source of unsaturated fatty acids. High molecular weight FACE polymers are insoluble in common solvents, such as benzene, toluene, THF, etc., and are highly water resistant. However, FACE polymers of hydrolyzed cellulose (MW 180 kD) are soluble/swellable in toluene and can be cast into tough, flexible films. FACE polymer properties of tensile strength and clasticity vary with degree of substitution and polymer size.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

14.
The results from three long-term field manipulation studies of the impacts of increased nitrogen deposition (0–120 kg N ha–1 yr–1) on lowland and upland heathlands in the UK were compared, to test if common responses are observed. Consistent increases in Calluna foliar N content and decreases in litter C:N ratios were found across all sites, while increases in N leaching were not observed at any site over the range 0–80 kg ha–1 yr–1. However, the response of Calluna biomass did vary between sites, possibly reflecting site differences in nutrient status and management histories. Five versions of a simulation model of heathland responses to N were developed, each reflecting different assumptions about the fate and turnover of soil N. Model outputs supported the deduction from mass balance calculations at two of the field sites that N additions have resulted in an increase in immobilisation; the latter was needed to prevent the model overestimating measured N leaching. However, this version of the model significantly underestimated Calluna biomass. Model versions, which included uptake of organic N by Callunaand re-mobilisation of N from the soil organic store provided some improvement in the fit between modelled and field biomass data, but re-mobilisation also led to an overestimation of N leaching. Quantification of these processes and their response to increased N deposition are therefore critical to interpreting experimental data and predicting the long-term impacts of atmospheric deposition on heathlands and moorlands.  相似文献   

15.
The compostability of starch–CaCO3 disposable packaging was examined in a source-separated municipal solid waste (MSW) composting facility located in East Hampton, NY. Source-separated MSW:starch–CaCO3 container mixtures of 0 (control), 5, and 20% (by volume) were prepared as feedstock for composting. Compost samples were collected weekly or biweekly during the composting process and examined for fragments of the starch–CaCO3 containers. Changes in compost quality due to the presence of starch–CaCO3 containers were assessed by measuring the nutrient and metal content of the three resultant MSW:starch–CaCO3 composts. Finally, plant growth studies were conducted to examine the composts for possible plant growth inhibition due to the deterioration of the starch–CaCO3 containers. Results showed that portions of the starch–CaCO3 containers were not identified in any of the 5 and 20% sieved and characterized compost fractions > 1.3 cm following 1–3 weeks of composting. Mechanical agitation of the waste along with optimum composting conditions were sufficient to initiate the rapid degradation of the starch–CaCO3 composites. Degradation of starch–CaCO3 containers did not affect compost nutrient and trace element content. Grass biomass measurements were performed once weekly over 28 days for grass grown in control (0%), 5%, and 20% starch–CaCO3-containing compost:soil mixtures. Significant differences in grass biomass for these compost:soil mixtures were measured only for the 0 and 20% starch–CaCO3-containing compost:soil mixtures at 28 days (9.07 vs 11.05 g, respectively; P = 0.046).  相似文献   

16.
Two different microbial communities able to degrade atrazine (atz) were inoculated in four different soils. The most critical factor affecting the success of inoculation was the soil pH and its organic matter (OM) content. In two alkaline soils (pH > 7), some inoculations led immediately to a strong increase of the biodegradation rate. In a third slightly acidic soil (pH = 6.1), only one inoculum could enhance atz degradation. In a soil amended with organic matter and straw (pH = 5.7, OM = 16.5%), inoculation had only little effect on atz dissipation on the short as well as on the long-term. Nine months after the microflora inoculations, atz was added again and rapid biodegradation in all alkaline inoculated soils was recorded, indicating the long-term efficiency of inoculation. In these soils, the number of atz degraders was estimated at between 6.5 × 103 and 1.5 × 106 (g of soil)-1, using the most probable number (MPN) method. Furthermore, the presence of the atz degraders was confirmed by the detection of the gene atzA in these soils. Denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA genes indicated that the inoculated bacterial communities had little effect on the patterns of the indigenous soil microflora.  相似文献   

17.
Eleven microorganisms were isolated from several temperate marine locations in the northeast Altantic coast of the United States and one tropical location in the Pacific Ocean (Hawaii) for the purpose of developing a rapid and accurate method of screening biodegradable materials for their susceptibility to mineralization. The materials evaluated in this study included chemically modified starch, amylose and pullulan, poly(3-hydroxybutyrate-co-valerate), (PHB/V), cellulose acetate, and a modified lignin/styrene. Some of the soluble, unmodified, biologically produced substrates such as starch, pullulan, and amylose mineralized rapidly. In general, the synthetic, insoluble polymers and the chemically modified polymers, such as acetylated and chlorinated amylose and pullulan, mineralized more slowly, although the ultimate mineralization of some of the substituted polysaccharides equaled or exceeded that of the unmodified substrate. The insoluble bacterial polyester, PHB/V, degraded rapidly after a short induction period. Initial respiration rate data, in general, could not be used as a predictor of ultimate mineralization. It was found that the cumulative level of carbon dioxide evolved signifies the minimum extent of biodegradation of the substrate, and the oxygen consumed is a good indicator of the maximum extent of substrate degradation.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

18.
This paper presents a test scheme for assessing the biodegradation potential of polymers, starting with aquatic screening systems (aerobic and anaerobic) and continuing to long-term systems. At the end of the scheme the material has to prove its behavior under the relevant disposal conditions. Aerobic screening was performed mainly under aquatic conditions, but also in soil, using BOD-respirometry. Carbon balances were performed to obtain a better evaluation of the biodegradation potential. Under anaerobic conditions, biodegradation in an aquatic medium was followed by measuring CH4 and CO2 production. Polymers not fully degraded in the screening systems were tested in aquarium systems for at least 1 year. Biodegradation was followed by monitoring the DOC released in the water, mass loss, and microbial growth on the samples and in the water as well as via FTIR spectroscopy and SEM pictures. Results are presented for the polymers PHB, PHBV, PCL, Mater-Bi AI05H and ZF03U, and Bioceta. By combining the data from the screening with the aquarium system, a good picture of the degradation behavior of the polymers is obtained.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

19.
In this study, the refuse from 12 landfills of various ages ranging from fresh refuse to material 11 years old was collected, and changes in the bio-stability parameters were determined. The parameters measured included cellulose, lignin, biochemical methane potential (BMP) and volatile solids, along with plastics. These parameters, along with the cellulose to lignin ratio were compared to determine which were most indicative of the bio-stability of the refuse. Lignin and volatile solids measurements were affected by plastics in refuse samples. Plastics increased both lignin and volatile solids measurements by approximately 10%. Cellulose and volatile solids measurements correlated well with age, each other, and with BMP measurements and were therefore considered the best parameters to determine stability. Data for the Riverbend landfill, a landfill with a moisture content of 48%, which is similar to that of bioreactor landfills, showed that degradation was nearly complete after 5 years as indicated by low values for cellulose and BMP.  相似文献   

20.
The potential biodegradability of several vegetable oil-based polymers was assessed by respirometry in soil for 60–100 days at temperatures of 30–58°C. Films of soybean oil and linseed oil which were oxidatively polymerized (Co catalyst) on a kraft paper support were 90%–100% mineralized to CO2 after 70 days at 30°C. Mineralization of polymerized tung oil to CO2 was much slower than soy or linseed oils. Mineralization of epoxy resins made from epoxidized soybean oil (ESO) and aliphatic dicarboxylic acids was rapid while mineralization of similar resins made with a triacid (citric) was slower. There was no significant degradation of polyamine/ESO resins after 100 days at 58°C. Mineralization of the available carbon in vegetable oil polyurethanes and cationically polymerized ESO was less than 7.5% after 70 days at 30°C and 25 days at 55°C compared to 100% for soybean oil. From these results, it appears that triglycerides highly cross-linked with non-degradable linkages are not biodegradable to a significant extent while triglycerides cross-linked with hydrolysable bonds such as esters remain biodegradable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号