首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
废物处理   7篇
污染及防治   2篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 427 毫秒
1
1.
Previous publications described the performance of biocovers constructed with a compost layer placed on select areas of a landfill surface characterized by high emissions from March 2004 to April 2005. The biocovers reduced CH4 emissions 10-fold by hydration of underlying clay soils, thus reducing the overall amount of CH4 entering them from below, and by oxidation of a greater portion of that CH4. This paper examines in detail the field observations made on a control cell and a biocover cell from January 1, 2005 to December 31, 2005. Field observations were coupled to a numerical model to contrast the transport and attenuation of CH4 emissions from these two cells. The model partitioned the biocover’s attenuation of CH4 emission into blockage of landfill gas flow from the underlying waste and from biological oxidation of CH4. Model inputs were daily water content and temperature collected at different depths using thermocouples and calibrated TDR probes. Simulations of CH4 transport through the two soil columns depicted lower CH4 emissions from the biocover relative to the control. Simulated CH4 emissions averaged 0.0 g m?2 d?1 in the biocover and 10.25 g m?2 d?1 in the control, while measured values averaged 0.04 g m?2 d?1 in the biocover and 14 g m?2 d?1 in the control. The simulated influx of CH4 into the biocover (2.7 g m?2 d?1) was lower than the simulated value passing into the control cell (29.4 g m?2 d?1), confirming that lower emissions from the biocover were caused by blockage of the gas stream. The simulated average rate of biological oxidation predicted by the model was 19.2 g m?2 d?1 for the control cell as compared to 2.7 g m?2 d?1 biocover. Even though its Vmax was significantly greater, the biocover oxidized less CH4 than the control cell because less CH4 was supplied to it.  相似文献   
2.
In the method termed “Other Test Method-10,” the U.S. Environmental Protection Agency has proposed a method to quantify emissions from nonpoint sources by the use of vertical radial plume mapping (VRPM) technique. The surface area of the emitting source and the degree to which the different zones of the emitting source are contributing to the VRPM computed emissions are often unknown. The objective of this study was to investigate and present an approach to quantify the unknown emitting surface area that is contributing to VRPM measured emissions. Currently a preexisting model known as the “multiple linear regression model,” which is described in Thoma et al. (2009 Thoma, E.R., Green, R., Hater, G., Goldsmith, C., Swan, N., Chase, M. and Hashmonay, R. 2010. Development of EPA OTM-10 for landfill applications. J. Environ. Eng., 136: 769776. [Crossref], [Web of Science ®] [Google Scholar]), is used for quantifying the unknown surface area.

The method investigated and presented in this paper utilized tracer tests to collect data and develop a model much like that described in Thoma et al. (2009 Thoma, E.R., Green, R., Hater, G., Goldsmith, C., Swan, N., Chase, M. and Hashmonay, R. 2010. Development of EPA OTM-10 for landfill applications. J. Environ. Eng., 136: 769776. [Crossref], [Web of Science ®] [Google Scholar]). However, unlike the study used for development of the multiple linear regression model, this study is considered a very limited study due to the low number of pollutant releases performed (seven total releases). It was found through this limited study that the location of an emitting source impacts VRPM computed emissions exponentially, rather than linearly (i.e., the impact that an emitting source has on VRPM measurements decreases exponentially with increasing distances between the emitting source and the VRPM plane). The data from the field tracer tests were used to suggest a multiple exponential regression model. The findings of this study, however, are based on a very small number of tracer tests. More tracer tests performed during all types of climatic conditions, terrain conditions, and different emissions geometries are still needed to better understand the variation of capture efficiency with emitting source location. This study provides a step toward such an objective.

Implications The findings of this study will aid in the advancement of the VRPM technique. In particular, the contribution of this study is to propose a slight improvement in how the area contributing to flux is determined during VRPM campaigns. This will reduce some of the technique's inherent uncertainties when it is employed to estimate emissions from an area source under nonideal conditions.  相似文献   
3.
In this study, the refuse from 12 landfills of various ages ranging from fresh refuse to material 11 years old was collected, and changes in the bio-stability parameters were determined. The parameters measured included cellulose, lignin, biochemical methane potential (BMP) and volatile solids, along with plastics. These parameters, along with the cellulose to lignin ratio were compared to determine which were most indicative of the bio-stability of the refuse. Lignin and volatile solids measurements were affected by plastics in refuse samples. Plastics increased both lignin and volatile solids measurements by approximately 10%. Cellulose and volatile solids measurements correlated well with age, each other, and with BMP measurements and were therefore considered the best parameters to determine stability. Data for the Riverbend landfill, a landfill with a moisture content of 48%, which is similar to that of bioreactor landfills, showed that degradation was nearly complete after 5 years as indicated by low values for cellulose and BMP.  相似文献   
4.
Non-hazardous industrial process wastes are receiving increased interest from landfill owners, especially with respect to bioreactor operation. These wastes could benefit bioreactors as they represent sources of liquid, nutrients, and/or substrate as well as revenue. However, landfill operators should exercise caution in accepting these wastes, as some could have detrimental effects on refuse decomposition. In this research, the use of laboratory-scale tests to evaluate the effect of one such waste on refuse decomposition is demonstrated. The waste evaluated, referred to as burnt sugar, is an acidic byproduct of corn-based polylactic acid production and represents a source of readily-biodegradable carbon. Lactic acid was the primary constituent of the BS at 0.73 g/g and the COD was measured at 1230 mg COD/g. Testing protocols were adapted to address the specific concerns surrounding the material. Abiotic dissolution tests conducted at mesophilic temperatures indicated that the majority of the waste dissolved into leachate recirculated over a layer of the waste within several days. Abiotic mixing tests suggested that the waste would acidify refuse to pH 6.41 at a loading of 21.9 g/dry kg refuse. However, in biologically active tests, the refuse was able to convert loadings as high as 196.7 g/dry kg refuse to methane. As the loadings increased toward and beyond this level, pronounced detrimental effects to the refuse ecosystem were observed, including a decrease in pH, accumulation of volatile fatty acids and COD, and lag in methane production. The results suggested that actively decomposing refuse has the potential to attenuate relatively high loading of a rapidly degradable but acidic substrate. Nonetheless, caution in the implementation of a field program to accept rapidly biodegradable acidic wastes is critical.  相似文献   
5.
Landfill fugitive methane emissions were quantified as a function of climate type and cover type at 20 landfills using U.S. Environmental Protection Agency (EPA) Other Test Method (OTM)-10 vertical radial plume mapping (VRPM) with tunable diode lasers (TDLs). The VRPM data were initially collected as g CH4/sec emission rates and subsequently converted to g CH4/m2/day rates using two recently published approaches. The first was based upon field tracer releases of methane or acetylene and multiple linear regression analysis (MLRM). The second was a virtual computer model that was based upon the Industrial Source Complex (ISC3) and Pasquill plume stability class models (PSCMs). Calculated emission results in g CH4/m2/day for each measured VRPM with the two approaches agreed well (r 2 = 0.93). The VRPM data were obtained from the working face, temporary soil, intermediate soil, and final soil or synthetic covers. The data show that methane emissions to the atmosphere are a function of climate and cover type. Humid subtropical climates exhibited the highest emissions for all cover types at 207, 127, 102, and 32 g CH4/m2/day, for working face (no cover), temporary, intermediate, and final cover, respectively. Humid continental warm summers showed 67, 51, and 27 g CH4/m2/day for temporary, intermediate, and final covers. Humid continental cool summers were 135, 40, and 26 g CH4/m2/day for the working face, intermediate, and final covers. Mediterranean climates were examined for intermediate and final covers only and found to be 11 and 6 g CH4/m2/day, respectively, whereas semiarid climates showed 85, 11, 3.7, and 2.7 g CH4/m2/day for working face, temporary, intermediate, and final covers. A closed, synthetically capped landfill covered with soil and vegetation with a gas collection system in a humid continental warm summer climate gave mostly background methane readings and average emission rates of only 0.09 g CH4/m2/day flux when measurable.

Implications The OTM-10 method is being proposed by EPA to quantify surface methane emissions from landfill covers. This study of 20 landfills across the United States was done to determine the efficacy of using OTM-10 for this purpose. Two recently published models were used to evaluate the methane flux results found with VRPM optical remote sensing. The results should provide a sense of the practicality of the method, its limitations at landfills, and the impact of climate upon the cover's methane flux. Measured field data may assist landfill owners in refining previously modeled methane emission factor default values.  相似文献   
6.
Observations on the methane oxidation capacity of landfill soils   总被引:1,自引:0,他引:1  
The objective of this study was to determine the role of CH4 loading to a landfill cover in the control of CH4 oxidation rate (g CH4 m−2 d−1) and CH4 oxidation efficiency (% CH4 oxidation) in a field setting. Specifically, we wanted to assess how much CH4 a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH4 emission and CH4 oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH4 emission and would decrease as CH4 emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH4 flux rate (CH4 loading) into the cover. When CH4 is supplied, a cover’s rate of CH4 uptake (g CH4 m−2 d−2) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH4 loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH4 delivered to it.  相似文献   
7.
The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg?1 (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg?1 from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10?8 to 10?7 m s?1 which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12 L Mg?1, respectively, was similar to the measured settlement of 15% and 5–8% strain, respectively (Abichou et al., 2013). The increase in net liquid volume in the As-Built cells indicates that the 37% (average) measured settlement strain in these cells cannot be due to consolidation as the waste mass did not lose any moisture but rather suggests that settlement was attributable to lubrication of waste particle contacts, softening of flexible porous materials, and additional biological degradation.  相似文献   
8.
9.
Nitrogen management in bioreactor landfills   总被引:17,自引:0,他引:17  
One scenario for long-term nitrogen management in landfills is ex situ nitrification followed by denitrification in the landfill. The objective of this research was to measure the denitrification potential of actively decomposing and well decomposed refuse. A series of 10-l reactors that were actively producing methane were fed 400 mg NO3-N /l every 48 h for periods of 19-59 days. Up to 29 nitrate additions were either completely or largely depleted within 48 h of addition and the denitrification reactions did not adversely affect the leachate pH. Nitrate did inhibit methane production, but the reactors recovered their methane-producing activity with the termination of nitrate addition. In well decomposed refuse, the nitrate consumption rate was reduced but was easily stimulated by the addition of either acetate or an overlayer of fresh refuse. Addition of acetate at five times the amount required to reduce nitrate did not lead to the production of NH4+ by dissimilatory nitrate reduction. The most probable number of denitrifying bacteria decreased by about five orders of magnitude during refuse decomposition in a reactor that did not receive nitrate. However, rapid denitrification commenced immediately with nitrate addition. This study shows that the use of a landfill as a bioreactor for the conversion of nitrate to a harmless byproduct, nitrogen gas, is technically viable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号