首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以PBS为载体和碳源的SND系统的脱氮效果研究   总被引:1,自引:0,他引:1  
水产养殖业高速发展所带来的氮素污染问题越来越严重,近年来同步硝化反硝化(Simultaneous Nitrification and Denitrification,SND)脱氮工艺因其良好的脱氮效果引起广泛关注。以人工模拟养殖污水作为原水,研究了以可生物降解材料聚丁二酸丁二醇酯(Polybutylene succinate,PBS)作为碳源和载体的同步硝化反硝化反应器(PBS-SND)的脱氮效果。结果表明,在水力停留时间(Hydraulic Retention Time,HRT)为4 h、进水氨氮(NH+4-N)质量浓度为10 mg/L、硝酸氮(NO-3-N)质量浓度为50 mg/L、溶氧(Dissolve Oxygen,DO)质量浓度为(6.242±1.262)mg/L的条件下,SND反应器可在11 d内成功启动并稳定运行。反应器稳定运行后具有良好的脱氮能力,NH+4-N、NO-3-N和总氮(TN)的去除率分别为66.50%、98.55%、99.10%;反应器内载体表面生物量随空间位置升高逐渐递减,上、中、下三层的PBS颗粒表面的生物量分别为(0.549 6±0.021 7)×109CFU/g PBS、(6.563 9±3.078 1)×109CFU/g PBS、(29.148 7±0.884 7)×109CFU/g PBS。快速硝化测试试验中NH+4-N的去除率为22.93%,快速反硝化测试中NO-3-N的去除率最高达88.90%,其平均去除速率可达到1.481 7 mg/(L·h)。PBS-SND系统可实现低C/N比养殖废水的高效脱氮。  相似文献   

2.
采用SBR反应器,以人工模拟高浓度氨氮废水为进水,研究DO质量浓度和碳源投加方式对同步硝化反硝化的影响.结果表明,在连续投加碳源的条件下,当SBR内的DO质量浓度分别为3 mg/L、0.9 mg/L、0.5 mg/L、0.3 mg/L时,都发生了同步硝化反硝化,TN的去除率分别为24.87%、33.80%、37.07%及29.06%;DO质量浓度为0.5mg/L时,TN去除效率最高.SBR内的氨氮负荷可以达到0.64kg N/(m3·d),即使在0.3 mg/L的低溶解氧环境下,COD和氨氮的去除率都可以达到90%以上.控制SBR内DO质量浓度恒定为0.5mg/L,采用一次性投加碳源方式时,TN去除率仅有30.31%;当采用连续投加碳源方式时,TN去除率为50% - 60%;采用半连续投加碳源方式时,TN的去除率可达81.48%.试验过程中,活性污泥絮体粒径为0.2~0.5 mm,大于普通的活性污泥工艺中的絮体.较大的絮体使得絮体内存在较大的缺氧区,有利于取得较高的脱氮效率.  相似文献   

3.
采用特异性移动床生物膜反应器(SMBBR)结合后置反硝化技术处理高氨氮农药废水,SMBBR选用亲水性更强的SDC-03型填料和特异性DNF409混合菌种,可以实现同步硝化反硝化脱氮。试验考察了DNF409菌种对填料挂膜的影响,不同C/N比对脱氮的影响以及对COD、氨氮、TN的去除率的影响。结果显示,当水力停留时间为8 d,进水COD质量浓度为2 408~7 440 mg/L,氨氮质量浓度为160.21~433.84 mg/L,TN质量浓度为208.27~537.65 mg/L,pH值为7.0~8.5时,AF中外加碳源C/N比值为5时,出水COD质量浓度平均为341.9 mg/L,平均去除率高达92.3%,氨氮质量浓度保持在3.0 mg/L以内,去除率在98%以上,TN质量浓度稳定在40~45 mg/L,去除率在80%以上,达到了《污水综合排放标准》(GB 8978—1996)的三级标准。  相似文献   

4.
采用特异性移动床生物膜反应器(SMBBR)结合后置反硝化技术处理高氨氮农药废水,SMBBR选用亲水性更强的SDC-03型填料和特异性DNF409混合菌种,可以实现同步硝化反硝化脱氮。试验考察了DNF409菌种对填料挂膜的影响,不同C/N比对脱氮的影响以及对COD、氨氮、TN的去除率的影响。结果显示,当水力停留时间为8 d,进水COD质量浓度为2 408~7 440 mg/L,氨氮质量浓度为160.21~433.84 mg/L,TN质量浓度为208.27~537.65 mg/L,pH值为7.0~8.5时,AF中外加碳源C/N比值为5时,出水COD质量浓度平均为341.9 mg/L,平均去除率高达92.3%,氨氮质量浓度保持在3.0 mg/L以内,去除率在98%以上,TN质量浓度稳定在40~45 mg/L,去除率在80%以上,达到了《污水综合排放标准》(GB 8978—1996)的三级标准。  相似文献   

5.
为了研究厌氧-微氧-好氧系统对垃圾渗滤液厌氧出水高效生物脱氮性能,基于短程硝化反硝化技术,设置5个阶段分析DO质量浓度(0. 2~1. 5 mg/L)、进水C/N(4~8)和亚硝化液回流比(300%~1 500%)对系统的影响,同时,通过快速提高进水NH_4~+-N负荷进一步研究反应器抗负荷冲击能力。结果表明,微氧区添加5 mmol/L KClO_3,能够快速提升系统亚硝化率;微氧区DO质量浓度保持0. 5~1. 0mg/L,亚硝化率高于90%。提高进水C/N和亚硝化液回流比(R)有利于反硝化过程充分进行,好氧池的设置能够使系统保持较高的COD和NH_4~+-N去除率,整个过程系统COD、NH_4~+-N和TN的平均去除率分别达89. 2%、98. 6%和82. 3%。此外,系统在短期负荷冲击下污染物去除率降低,当进水NH_4~+-N负荷快速提升时,TN去除率由90%下降到76%。然而,经过10 d的恢复期,系统可以恢复到原来的状态,并具有较高的性能。  相似文献   

6.
为能更好地达到同步除磷脱氮的目的,对反硝化聚磷菌( Denitrifying Phosphorus Removal Bacteria,DPB)进行了富集培养,并对其中的典型菌株进行了特性研究.以校园生活区污水为研究对象,在温度为25℃,pH值为7.5,乙酸钠为碳源,进水COD为316.5 mg/L的条件下,采用三阶段的污泥驯化,对反硝化聚磷菌种进行了分离纯化,并对富集的典型菌株进行了生理生化试验、吸磷试验、硝酸盐还原产气试验.结果表明,富集培养后的DPB在A/O/A/O-SBR系统(厌氧2h,好氧1.5h,缺氧1.5 h,后置曝气0.5h)中成为优势菌群,系统中COD、NH4+-N、TN、TP的出水质量浓度分别为28.35 mg/L、0.87 mg/L、4.05mg/L和0.37 mg/L.分离鉴定出具有反硝化除磷能力的Z7、Z9两株典型菌株,其吸磷率均在50%左右.经细菌形态观察、生理特性分析及16S rDNA序列测定,鉴定Z7、Z9为缺氧反硝化聚磷菌,与假单胞菌(Pseudomonas)最相似,其同源性均达99.9%.  相似文献   

7.
将人苍白杆菌(Ochrobactrum anthropi)降解苯胺的过程与硝化反应相结合,在三重环流三相流化床中实现共基质降解,充分降低废水中的苯胺和苯胺降解过程中产生的NH4 -N.以自行研制的聚氨酯填料为载体,研究了流化床内苯胺、DO以及NaHCO3等对该共基质降解过程的影响.挂膜过程中苯胺质量浓度下降和NH4 质量浓度上升,证明了此过程中人苍白杆菌生物膜优先形成,而且NH4 质量浓度先增后降反映了人苍白杆菌生物膜的形成为硝化菌生物膜的形成创造了条件.通过苯胺对硝化菌的抑制性实验发现,苯胺质量浓度从100 mg/L下降到4 mg/L的过程中,其对硝化菌的抑制作用由强变弱.当苯胺质量浓度小于4 mg/L时,对硝化菌无抑制作用.其中亚硝化细菌比硝化细菌活性恢复更快,表明硝化菌比亚硝化菌对苯胺的毒性抑制更为敏感.流化床高效的传氧能力可以改善硝化细菌摄O2的条件.DO 2~3 mg/L,pH=7.5~8.5及适当的NaHCO3添加量是苯胺与NH4 -N共基质降解的适合条件.此条件下进水COD和苯胺质量浓度分别为540 mg/L及210 mg/L左右时,出水能够达到国家一级排放标准.  相似文献   

8.
采用MBBR-A2O/MBR(又称BCO-MBR)工艺,对水质特征呈现低碳源高氮磷、水质波动大和日变化系数大等特点的农村生活污水进行研究。对比MBBR-A2O/MBR工艺在5种不同水力停留时间下的(0.42 d、0.50 d、0.75 d、1.25 d、1.50 d)运行状况,挑选出最佳的水力停留时间,并利用Lawrence-McCarty模型构建该工艺的污染物降解动力学方程。结果表明,随着水力停留时间(HRT)的延长,MBBR-A2O/MBR工艺对污染物的去除效果逐渐提升。当HRT为1.25d,CODCr、NH3H、TN、TP平均进水质量浓度分别280.67mg/L、36.88 mg/L、50.59 mg/L、2.51 mg/L时,平均出水质量浓度分别为34.33 mg/L、3.19 mg/L、5.13 mg/L、0.63 mg/L,平均去除率分别可达87.86%、89.92%、89.85%、74.95%。CODCr、NH3H、TN出水质量浓度在城镇污水排放标准一级A限值以下,TP出水质量浓度达到一级B标准,因此确定最佳的HRT为1.25 d。污染物降解动力学计算所得模拟值与实际出水质量浓度测量值拟合度良好,其中CODCr模拟值与平均测量值一致性最高,相对误差在0.02~0.14,NH3H与TN的相对误差分别在0.19~0.60和0.1~0.33。这表明污染物降解动力学方程可以较好地模拟工艺出水的污染物质量浓度。CODCr降解动力学方程常数为Vmax=0.19 d-1,KS=82.97 mg/L;NH3H降解动力学方程常数为Vmax=0.02d-1,KS=8.49 mg/L;TN降解动力学方程常数为Vmax=0.024 d-1,KS=8.10 mg/L。研究的动力学常数与传统活性污泥法动力学常数相比,KS较高,而Vmax较低,导致Vmax较低的主要原因可能是测定的污泥质量浓度高于实际有效的质量浓度。研究对利用MBBR-A2O/MBR工艺处理农村生活污水和传统活性污泥工艺提标改造具有一定的应用参考价值。  相似文献   

9.
以序批式动态膜反应器为研究对象,对其处理低碳氮比废水的效果进行了试验研究.试验温度为19 ~ 21℃,MLSS为3~5g/L;好氧阶段溶解氧质量浓度为2 ~4 mg/L,厌氧阶段溶解氧质量浓度为0.2~0.5 mg/L;水力停留时间共12 h,其中好氧阶段8h,厌氧阶段4h.结果表明:当进水COD、TN和NH4+-N质量浓度分别为250~300mg/L、103 ~ 156 mg/L和92~140 mg/L时,反应器对上述污染物表现出较高且稳定的去除效率,COD、TN和NH4+-N平均去除率分别达到76.15%、82.16%和90.13%.同时,反应器系统中污泥的比硝化速率与常规处理装置中的活性污泥相比较高,以NH4+-N的降解量计为0.101 d-1,以NO3--N的积累量计为0.091 d-.  相似文献   

10.
实验研究了膜生物反应器与接触氧化组合工艺处理生活废水的效果,结果表明:DO在2.0mg/L左右,HRT为8h的条件下,COD、NH3-N、TN、TP的去除率分别达到93.8%、93.7%、41.4%、40.6%;处理出水COD质量浓度小于30mg/L,NH3-N质量浓度小于4 mg/L,SS检不出,出水水质好,能达到中水回用的标准。  相似文献   

11.
通过UASB反应器中接种厌氧氨氧化颗粒污泥,处理模拟实验废水,检测其厌氧脱氮效果,并探寻其最佳运行条件。研究表明,UASB反应器中厌氧氨氧化菌具有高效的脱氮效果。厌氧氨氧化菌对NH~+_4-N和NO~-_2-N的适宜浓度负荷均为220 mg/L,水力停留时间适宜为4 h,最适温度为35℃,最佳p H值为8.0,在此条件下,NH~+_4-N,NO~-_2-N和TN的去除率分别可达97%,98.5%及88%。  相似文献   

12.
针对连续流人工湿地脱氮效果差、占地面积大、冬季效能低的问题,以提高人工湿地冬季低温运行效能、减小人工湿地占地面积为目标,在前期序批式深床人工湿地研究基础上,重点考察其冬季低温条件下的处理效能。结果表明,温度对序批式深床人工湿地效能影响显著,8~10℃下城镇污水进水COD、NH_4~+-N和TN质量浓度为261mg/L、60 mg/L和70 mg/L时,各自平均去除率分别为72.6%、36.7%和40.2%,较20~25℃时分别下降9.8%、15.4%和10.6%;水温8-10℃时,2级序批式深床人工湿地系统COD、NH_4~+-N和TN去除率分别为95.1%、74.7%和78.7%,较单级系统的72.0%、38.9%和41.1%分别提高了23.1%、35.8%和37.6%。  相似文献   

13.
以膜生物反应器(Membrane Bio-Reactor,MBR)工艺和间歇曝气式膜生物反应器(Intermittent Aeration Membrane Bio-Reactor,IAMBR)工艺进行对比运行试验,探求贫营养条件下系统的运行和脱氮特性。定期测量各项氮指标及混合液污泥浓度等数据,结果表明:IAMBR系统整个周期内的氨氮去除率(平均值为81%)基本高于MBR(平均值为76%);IAMBR的总氮去除率虽然有限,但基本维持了理论上的出水总氮质量浓度小于进水总氮质量浓度,优于MBR的总氮去除率负值状态;试验末期,MBR的污泥质量浓度迅速下降至3 650 mg/L以下,而间歇曝气式IAMBR的污泥质量浓度仍旧保持在4 530 mg/L。因此,整体来看IAMBR系统比MBR更能经受贫营养环境的冲击。  相似文献   

14.
通过接种具有厌氧氨氧化性能的污泥,采用序批式厌氧反应器(ASBR)处理垃圾渗滤液,研究水力停留时间(HRT)、pH、温度等对厌氧氨氧化反应过程的影响并确定各因素的最佳控制范围。结果表明,在本试验条件下,HRT、pH和温度的适宜范围分别为24 h、7.5~8.5和35℃。在此条件下,进水NH~+_4-N浓度为150 mg/L,NO~-_2-N浓度为160 mg/L,COD浓度为300 mg/L时,出水NH~+_4-N、NO~-_2-N、TN、COD平均浓度分别为15.5 mg/L、0.01mg/L、43.2 mg/L和152.1 mg/L,相对应的平均去除率分别为89.7%、99.9%、86.1%和47.6%。  相似文献   

15.
针对现有人工湿地硝化效能低、占地面积大的问题,研究污水处理厂尾水人工湿地高效硝化深度处理技术,采用序批式深床人工湿地反应器(DSCW),考察进水方式及其运行工况对硝化效能的影响。结果表明,进水方式、进水时间和闲置时间对湿地硝化效能影响显著。进水方式采用"连续进水-间歇出水"较连续进出水运行工况NH_4~+-N去除率高39.69%。连续进水时间为5.5 h、7.5 h、11.5 h时,NH_4~+-N去除率分别为81.82%、88.12%、89.91%;闲置时间为0、2 h、4 h时,NH_4~+-N去除率分别为88.12%、94.46%、92.60%。反应器在水温(20±3)℃、负荷35.56 g NH_4~+-N/(m2·d)、连续进水7.5 h-间歇出水0.5 h-排空闲置2 h运行工况下,出水NH_4~+-N为0.91 mg/L,去除率为94.46%,系统NH_4~+-N去除效能大幅提高。  相似文献   

16.
采用倒置A2/O法同时处理城市污水与渗滤液去氮除碳。结果表明,当渗滤液混入量较低时,对城市污水碳源基本不构成影响;水力停留时间是最显著影响因子;理论最佳工况是:水力停留时间为9 h,溶解氧质量浓度为2 mg/L,外回流比为0.8,内回流比为2。此时,COD、NH3-N和TN浓度均可稳定地达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准,平均去除率分别为77.4%、97.2%和62.4%。  相似文献   

17.
US/Fenton试剂协同处理焦化废水的研究   总被引:2,自引:0,他引:2  
采用US (超声波)协同Fenton试剂氧化法处理焦化废水,考察了H2O2投加量、Fe2 投加量、废水的pH、反应时间和超声波功率对处理效果的影响,确定了最佳工艺条件.结果表明,在H2O2投加量7.0 g/L;Fe2 投加量500 mg/L;pH=3.0; 反应时间 40 min; 超声波功率 600 W 的条件下,COD、NH3-N、CN-和色度的去除率分别达95.8%、71.3%、69.5%和75.2%,出水COD降至41.0 mg/L.在相同条件下,US/Fenton试剂协同法的处理效率比单独Fenton试剂氧化法的处理效率提高了约20%,且反应时间显著缩短.  相似文献   

18.
以小麦秸秆、凹凸棒石、针铁矿为原料,以酚醛树脂为黏结剂,通过复合、热压、烧结等工艺过程制备出不同成分的木质陶瓷,并利用该系列木质陶瓷对城市二级出水中的有机物及氮磷进行吸附实验研究。结果表明,900℃下的木质陶瓷[m(麦秸)∶m(凹凸棒石)∶m(针铁矿)=1∶1∶1]COD及NH_3-N的吸附效果最佳,2 h可达吸附平衡,投加量为8 g/L时COD去除率达66.48%,投加量为6 g/L时氨氮去除率为69.72%,且酸性条件不利于COD的吸附,NH_3-N的最佳吸附p H范围是2~11。800℃下的木质陶瓷[(麦秸)∶m(凹凸棒石)∶m(针铁矿)=1∶2∶0]P的吸附效果最佳,15 min可达吸附平衡,投加量为6 g/L时总P去除率可达99.69%,p H值、转速、温度对吸附磷影响不大。  相似文献   

19.
为了提高活性污泥法处理生活污水的效率,采用铁氧体与生物法相结合方式处理生活污水。在生物反应器中投加磁化后的铁氧体粉末,在一定条件下驯化活性污泥。通过试验,得出了铁氧体的最佳投加量为375 mg/L。同普通活性污泥法相比,投加了375 mg/L铁氧体粉末的活性污泥对生活污水中COD和NH3-N的去除率分别提高了4.7%和26.5%;在各自的最佳运行条件下,投加铁氧体后反应器的水力停留时间缩短1 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号