首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Titanium dioxide photocatalysis, using 200 mgl−1 of TiO2, and photo-Fenton, using 20 mg l−1 of iron, were applied to the treatment of dimethoate dissolved in water at 50 mg l−1. A heterogeneous photocatalysis test was performed in a 35-l solar pilot plant with Compound Parabolic Collectors (CPCs) under natural illumination. A homogeneous photocatalysis test was performed in a different solar pilot plant with four CPC units and a total volume of 75 l. In this work total disappearance of dimethoate and 90% of mineralization were attained in both solar treatments. Treatment time, hydrogen peroxide consumption and ferric phosphate precipitation during photo-Fenton treatment were discussed. An erratum to this article can be found at  相似文献   

2.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

3.
Degradation and toxicity reduction of perfluorooctanoic acid (PFOA) were investigated using TiO2 adsorption, vacuum ultraviolet (VUV) photolysis, and VUV/TiO2 photocatalysis in acidic and basic aqueous solutions. Chemical analyses of PFOA and its selected by-products and an acute toxicity assessment using the luminescent bacteria Vibrio fischeri (Microtox®) were conducted during and after the various treatment methods. PFOA was found to be best treated by VUV/TiO2 at pH 4 with HClO4, as illustrated by the almost complete degradation of PFOA within 360?min and rapid removal of acute microbial toxicity within 60?min. This difference in the efficiency may be attributed to the strong oxidation effectiveness of the radical species generated in acidic media and the electron scavenger effect of the addition of HClO4 in VUV/TiO2 photocatalysis. In addition, the proposed method could effectively decompose other perfluorocarboxylic acid (PFCA) species (C3–C7 perfluoroalkyl groups) if the initial intermediates formed were longer-chain species that degraded stepwise into shorter-chain compounds by VUV photolysis and VUV/TiO2 photocatalysis in acidic and basic aqueous solutions.  相似文献   

4.
The photocatalytic oxidation of humic substances in aqueous solutions and natural waters with TiO2 attached to buoyant, hollow glass micro-spheres was studied. A maximum oxidation efficiency of 3.6 mg W–1 h–1 was achieved in neutral or alkaline media at a plane surface concentration of the catalyst attached to the micro-spheres of 25 g m–2. Proceeding by different mechanisms in acidic and alkaline media, the photocatalytic oxidation efficiency did not benefit from an excessive presence of hydroxyl radical promoters, hydrogen peroxide and alkali.  相似文献   

5.
Previous epidemiological studies have shown that dental fluorosis is endemic in the lowland, dry zone of Sri Lanka, which is considered to be an area in which excessive quantities of fluorides are present in the drinking water supplies. It has been found that kaolinitic clay forms a suitable raw material in the defluoridation of water.It is shown that there is a noticeable effect of selenium and media pH on the reactions involved in the interaction of fluoride with clay. In this study, 1 mM fluoride solutions containing SeO 3 2– (selenite) concentrations of 0 mM, 0.1 mM, 0.5 mM and 1 mM were used in the reactions with kaolinitic clay. The effect of pH was monitored in the range 4 to 8. It was observed that fluoride adsorption was maximum at a pH of 5.6 without either SeO 3 2– or SeO 4 2– , the adsorption capacity being 15.2 mol F g–1 clay. However, when the SeO 3 2– concentration was increased up to 0.5 mM at this optimum pH, the adsorption capacity reduced to 12.8 mol F g–1 clay. Monitoring of the effect of SeO 4 2– and media pH on fluoride adsorption showed that when the SeO 4 2– concentration increases from zero to 0.1 mM, there is a reduction of fluoride adsorption capacity. However, when the SeO 4 2– concentration is further increased from 0.1 mM to 1.0 mM, there was an increase in the fluoride adsorption capacity, indicating a more consistent effect of SeO 3 2– on fluoride-kaolinitic clay interaction than SeO 4 2– .Fluoride concentrations in drinking water supplies have a marked effect on dental health and the geochemistry of selenium appears to play an important role in the geochemical mobility of fluoride ions.  相似文献   

6.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

7.
Nitrogen is often provided to impoverished overburden dumps through the establishment of legumes. Low indigenous soil nutrient levels, summer drought conditions and an acidic mining overburden represent major obstacles to successful rehabilitation of open-cut coal mining at Collie in southwest Western Australia. In this study,Acacia pulchella, a native Western Australian species often used in rehabilitation of mined lands, was shown to nodulate and grow in coal mining overburden with pH values less than 4.0 under glasshouse conditions. Plant growth (both top and root dry weight), nodule fresh weight, and nodulation success was best at a pH near 5.0, a value only slightly lower than the typical soil pH of the native jarrah (Eucalyptus marginata) forest. Acetylene reduction rates were reduced by acidity and ranged from 8.2 m C2H4g–1hr–1 at pH 6.77 to 3.0 m C2H4g–1hr–1 at a pH of 3.98. Four additional plant species were found to occur and to nodulate on acid overburden material at Collie.  相似文献   

8.
The -N-acetyl-D-glucosaminidase (NAGase, EC 3.2.1.52) from prawn (Penaeus vannamei) was purified by extraction with 30% ethanol solution and ammonium sulfate fractionation, then chromatographed on Sephadex G-100 followed by DEAE-cellulose (DE-32) columns. The purified enzyme determined to be homogeneous by polyacrylamide gel electrophoresis (PAGE) and SDS-PAGE. The specific activity of the purified enzyme was 1,560 U mg–1. Enzyme molecular weight was determined to be 105,000 Da; it contained two subunits of the same mass (45,000 Da). The pI value was calculated to be 4.8 by isoelectric focusing. The optimum pH and optimum temperature of the enzyme for the hydrolysis of pNP--D-GlcNAc (enzyme substrate) were determined to be pH 5.2 and 45°C, respectively. The behavior of the enzyme during hydrolysis of pNP--D-GlcNAc followed Michaelis–Menten kinetics, with Km=0.254 mM and Vm=9.438 M min–1, at pH 5.2 and 37°C. The stability of the enzyme was investigated, and the results showed that the enzyme was stable in a pH range from 4.2 to 10.0 and at temperatures <40°C. The effects of metal ions on the enzyme were also studied. Li+, Na+ and K+ had no influence on enzyme activity. Mg2+, Ca2+ and Mn2+ activated the enzyme, while Ba2+, Zn2+, Co2+, Cd2+, Hg2+, Pb2+ Cu2+, Fe3+ and Al3+ showed various degrees of inhibitory effects on the enzyme.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

9.
Here we evidenced the photo-induced degradation of monolinuron, a phenylurea herbicide, through the 300–450 nm light excitation of nitrite and nitrate species. The degradation pathways were compared to those obtained under direct photolysis at 254 nm. When using NO3 and NO2 as photoinducers, hydroxyphenyl-substituted photodegradation products were found to be formed specifically through the involvement of OH° radicals. NO and NO2-phenyl substituted compounds were also observed as a result of the production of NO° and NO2° radicals. Half-lives of monolinuron in aqueous solutions were measured in various conditions of concentrations of substrate and inducer, oxygen content and pH.  相似文献   

10.
Previous research has demonstrated that many urban soils are enriched in Pb, Cd and Zn. Culture of vegetable crops in these soils could allow transfer of potentially toxic metals to foods. Tanya lettuce (Lactuca sativa L.) was grown in pots of five urban garden soils and one control agricultural soil to assess the effect of urban-soil metal enrichment, and the effect of soil amendments, on heavy metal uptake by garden vegetables. The amendments included NPK fertilizer, limestone, Ca(H2PO4)2, and two rates of limed sewage sludge compost. Soil Cd ranged from 0.08 to 9.6 mg kg–1; soil Zn from 38 to 3490 mg kg–1; and soil Pb from 12 to 5210 mg kg–1. Lettuce yield on the urban garden soils was as great as or greater than that on the control soil. Lettuce Cd, Zn and Pb concentrations increased from 0.65, 23, and 2.2 mg kg–1 dry matter in the control soil to as high as 3.53, 422 and 37.0 mg kg–1 on the metal-rich urban garden soils. Adding limestone or limed sewage sludge compost raised soil pH and significantly reduced lettuce Cd and Zn, while phosphate fertilizer lowered soil pH and had little effect on Zn but increased Cd concentration in lettuce. Urban garden soils caused a significant increase in lettuce leaf Pb concentration, especially on the highest Pb soil. Adding NPK fertilizer, phosphate, or sludge compost to two high Pb soils lowered lettuce Pb concentration, but adding limestone generally did not. On normally fertilized soils, Pb uptake by lettuce was not exceptionally high until soil Pb substantially exceeded 500 mg kg–1. Comparing garden vegetables and soil as potential sources of Pb risk to children, it is clear that the risk is greater through ingestion of soil or dust than through ingestion of garden vegetables grown on the soil. Urban dwellers should obtain soil metal analyses before selecting garden locations to reduce Pb risk to their children.  相似文献   

11.
Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy has become popular for the characterization of P species in environmental samples. However, these are commonly made alkaline (pH?>?13) to facilitate sample comparison and ease peak identification, but this may cause hydrolysis of some compounds. This study examined the chemical shift of known P compounds and supplemented this with published data to determine the viability of examining samples at their native pH, thereby minimizing sample disturbance. A 31P NMR pH titration of known P compounds resulted in chemical shifts ranging from about ?22 to 8 ppm in the pH range 5–13. Categorization and calculation of chemical shifts for over 100 naturally occurring compounds indicated that good distinction between orthophosphate diesters, orthophosphate monoesters, nucleotides, phosphonates, and phosphagens was best at ≥pH 7, but unlikely below this pH. Analysis of several water extracts of soil and dung, overland flow samples, and lake water indicated a wide variety of well-defined peaks that were assigned to orthophosphate, orthophosphate monoesters, orthophosphate diesters, pyrophosphate, polyphosphate, or phosphonates. Changing the sample pH to >13 caused many species (such as phosphonates, orthophosphate diesters, and polyphosphates) to decrease either by hydrolysis or precipitation. Hence, it is recommended that samples be analysed at their native pH but, if poorly resolved, should have their pH raised to ≥7.  相似文献   

12.
We examined the growth rate (µ) ofUlva lactuca L. (collected from Roskilde Fjord, Denmark in 1987) at different levels of dissolved inorganic carbon (DIC), pH and oxygen in two culture facilities. Growth was faster in Facility A (µ max ca 0.3 d–1) than in B (µ max ca 0.2 d–1), probably because of more efficient stirring and higher light intensity. The growth-DIC response curve exhibited low half-saturation constant (K 1/2) values (0.35 mM DIC in A, 0.55 mM in B) and growth rates close toµ max at natural seawater concentration of 2 mM DIC. Growth rate showed a low sensitivity to oxygen over a wide range of DIC and oxygen concentrations. Collectively, the results demonstrated an efficient mechanism for DIC use, unaffected by acclimatization to DIC concentrations between 0.2 and 3 mM. The growth rate decreased little between pH 7.5 and 9 at 2 mM DIC, but steeply above pH 9 approaching zero just above pH 10. The decline of growth at high pH may result from direct pH effects on cell pH, reduced HCO 3 - availability and impaired operation of the carbon uptake process. The growth responses ofU. lactuca to DIC, pH and oxygen resembled those observed in previous short-term photosynthetic experiments. This similarity is probably due to the fast growth ofU. lactuca which means that photosynthetic products are rapidly converted into cell growth. Based on the culture experiments we argue that field plants ofU. lactuca not exposed to stagnant water and DIC depletion are likely to be limited in growth by environmental factors other than DIC (e.g. light and nutrients). Dense mats ofU. lactuca, however, may show reduced growth as a result of DIC depletion, high pH and self-shading.  相似文献   

13.
Eelgrass (Zostera marina L.) has access to nutrient pools in both the water column and sediments. We investigated the potential for eelgrass to utilize nitrate nitrogen by measuring nitrate reductase (NR) activity with an in vivo tissue assay. Optimal incubation media contained 60 mM nitrate, 100 mM phosphate, and 0.5% 1-propanol at pH 7.0. Leaves had significantly higher NR activity than roots (350 vs 50 nmoles NO 2 produced g FW–1 h–1). The effects of growing depth (0.8 m MLW, 1.2 m, 3.0 m, 5.0 m) and location within the eelgrass meadow (patch edge vs middle) on NR activity were examined using plants collected from three locations in the Woods Hole area, Massachusetts, USA, in July 1987. Neither depth nor position within the meadow appear to affect NR activity. Nitrate enrichment experiments (200 M NO 3 for 6 d) were conducted in the laboratory to determine if NR activity could be induced. Certain plants from shallow depth (1.2 m) showed a significant response to enrichment, with NR activity increasing from >100 up to 950 nmoles NO 2 g FW–1 h–1 over 6 d. It appears that Z. marina growing in very shallow water (0.8 m) near a shoreline may be affected by ground water or surface run-off enrichments, since plants from this area exhibited rates up to 1 600 nmol NO 2 g FW–1 h–1. Water samples from this location consistently had slightly higher NO 3 concentrations (1.4 M) than all other collection sites (0.7 M). Thus, it is possible that chronic run-off or localized groundwater inputs can create sufficient NO 3 enrichment in the water column to induce nitrate reductase activity in Zostera leaves.  相似文献   

14.
Field experiments were done in two sites, Yixing and Changshu, Jiangsu province, China, to study P movement and leaching in flooded paddy soils. P movement in soil was investigated by using the KH2 32PO4 tracker method, and the amount of P leached from the soil layer in different depths was estimated by measuring P concentrations in the soil solution and saturated hydraulic conductivities in field. Determination was done about one month after P application. There was 46% and 42% of total 32P retained in the 0–5cm layer of soil in the Yixing site and in the Changshu site respectively. The 32P retained in the 25–30 cm layer was only about 1–2% of the total 32P added. Furthermore, 8.01% of 32P in the soil of Yixing site and 16.8% of 32P in the soil of Changshu site was lost from the layer 0–30cm soil. The seasonal amounts of P leached from the top soil layer and from bottom layer are about 4.5–5.8% and 1.6–2.1% of the total P application, respectively. Changes of total P concentrations in soil solutions during rice growth showed that the fertilizer P applied before flooding of the paddy fields suffered a flash leaching loss and a slow leaching loss. We concluded that the fertilizer P could quickly move in the flooded paddy rice field and parts of it can enter into surface water and ground water. Unless the P application is well managed the risk of P loss and consequently environmental pollution exist.  相似文献   

15.
Orthophosphate (P) uptake on a seasonal basis in surface waters and in vertical profiles was directly proportional to the standing stocks of phytoplankton and bacterioplankton in the outer Los Angeles Harbor and in southern California coastal waters during 1978–1979. A phytoplankton-enriched size fraction (PEF) which was retained on a 1 m pore-size filter contained 83% of the total chlorophyll a but only 18% of the total bacteria. A bacterioplankton-enriched size fraction (BEF) which passed the 1 m filter but was retained on a 0.2 m filter contained 82% of the total bacteria but only 17% of the total chlorophyll a. PEF and BEF accounted for 91 and 9% of the microbial carbon, respectively. The differential uptake of 10 radiolabeled substrates more fully characterized PEF and BEF. 33P uptake occurred in both PEF and BEF, accounting for 47 and 53%, respectively, of the total uptake. 33P uptake by both size fractions was inhibited by low concentrations of 2,4-dinitrophenol (DNP), N-ethylmaleimide (NEM) and carbonyl cyanide, m-chlorophenylhydrozone (CCCP). Darkness and low levels of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) selectively inhibited 33P uptake by PEF; valinomycin selectively inhibited 33P uptake by BEF. An experiment measuring 33P uptake velocity versus P concentration produced sigmoidal saturation kinetics at high levels of exogenous P. Kinetic parameter analyses according to the Hill equation gave a V max of 7.12 nmol l–1 h–1 and aK t of 0.41 nmol l–1 for PEF, and a V max of 5.17 nmol l–1 h–1 and aK t of 112 nmol l–1 for BEF. Consideration of relative surface areas of phytoplankton and bacterioplankton, their 33P uptake rates in light and dark, and estimates of the population turnover times emphasizes the potential importance of bacterioplankton in community phosphorus metabolism.  相似文献   

16.
Zea mays was grown in nutrient solution with different concentrations of sulphite and sulphate (0, 5, and 10 mM) at pH 5 or 7, with or without aeration, for five days. Sulphite injured the plants, especially at low pH. Lack of aeration increased the sulphite injury of the plants at the high pH. in the aerated solutions, sulphite concentrations approached zero after five hours, while the unaerated solutions still contained sulphite after four days. Very little sulphite was found in the plants. The results indicate that the toxicity to the plants of the different chemical species of the sulphite in the solution decreases in the following order: SO2 (aq) > HSO3 > SO3 2–.  相似文献   

17.
The activity of Na–K-ATPase was measured in crude homogenates prepared from various organs (leg muscle, pincer muscle, heart, testes, digestive gland, hypodermis, gills 1–9) of shore crabs, Carcinus maenas L., acclimated to salinities ranging between 10 and 50 S (in steps of 10 S). In all salinities tested, Na–K-ATPase activity was highest in posterior gills 7–9 (10–12 mol Pi mg protein-1 h-1), followed by anterior gills 1–6 (ca. 2.5 mol Pi mg protein-1 h-1) and the other organs (in most cases far below 2mol Pi mg protein-1 h-1). In gills only, Na–K-ATPase activity was salinity-dependent, with the highest values in the lowest salinities and vice versa. In gills 7–9, Na–K-ATPase activity was increased more than threefold following a reduction in salinity from 50 to 10 S. Na–K-ATPase activity, expressed as percentage of total ATPase activity, amounted to 60–80% in gills, about 60% in hypodermis and 20–40% in the other organs. Ouabain, a specific inhibitor of Na–K-ATPase activity, reduced serum osmolalities in crabs kept at 9–10 S only when injected into the hemolymph (1 and 5 · 10-5 M), but had no effect when dissolved in ambient water (10-4 M). The results obtained underline that crustacean gills are the main organs for ionic regulation, and confirm the hypothesis of the central role of the Na–K-ATPase in active Na uptake as the basic mechanism of hyperregulation in dilute media. Reduction of serum osmolalities following injection of ouabain into the hemolymph confirms previous reports on localization of the sodium pump in the basolateral parts of epithelial cells.  相似文献   

18.
Rates of oxygen consumption were measured for embryos, larvae and juveniles of the seastar Mediaster aequalis for 76 days post-fertilization. The rate increased from 0.65 nmol O2 ind–1 h–1 at 6 h after fertilization to 2.8 nmol O2 ind–1 h–1 at day 35. Larvae became competent to metamorphose around day 35 post-fertilization and began to decrease their metabolic rate after this time. Metamorphosed juveniles consumed 0.74 nmol O2 ind–1 h–1. Eggs contained 138.6 µg lipid ind–1 and 12.1 µg protein ind–1. Lipid levels decreased in concentration throughout development while protein levels increased slightly. The lipid levels decreased by 88.5 µg from eggs to day 76 larvae, accounting for 3.5 J of energy. Total oxygen consumption to this point was 3.74 µmol O2 ind–1, accounting for 1.84 J. The energetic demand up to day 76 was met completely through the use of lipid reserves. Metamorphosed juveniles expended 0.5 J more than larvae at the same age. Tubes of the polychaete Phyllochaetopterus prolifica were able to induce metamorphosis in M. aequalis larvae and a non-polar extract of these tubes also triggered metamorphosis. Larvae that are delayed to metamorphose can sustain their metabolic rate with lipid reserves for a limited, yet undetermined, period.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
The monitoring of chemical properties, including heavy metals, in soils is necessary if better management and remediation practices are to be established for polluted soils. The National Institute of Agricultural Science and Technology initiated a monitoring study that investigated fertility and heavy metal contents of the benchmarked soils. The study covered paddy soils, upland soils, and horticultural soils in the plastic film houses, and orchard soils throughout the Korea from 1990 to 1998. Likewise,4047 samples of paddy and 2534 samples of plastic house in 1999 and 2000 were analyzed through the Soil Environment Conservation Act. Soil chemical properties such as pH, organic matter, availablephosphate and extractable calcium, magnesium and potassium contents, and heavy metal contentssuch as cadmium, copper, lead, zinc, arsenic, mercury, and cobalt contents were analyzed. The studyshowed that the average contents of organic matter, available phosphate, and extractable potassiumrapidly increased in plastic house soils than in upland or paddy soils. Two kinds of fertilizer recommendation systems were established for the study: the standard levels by national soil average data for 77 crops and the recommendation by soil test for 70 crops. Standard nitrogen fertilizer application levels for cereal crops changed from 94 kg/ha in 1960s, 99 kg/ha in 1970s, 110 kg/ha in 1980s to 90 kg/ha in 1990s. The K2O-fertilizer also changed from 67 kg/ha in 1960s, 76 kg/ha in 1970s, 92 kg/ha in 1980s, andonly 44 kg/ha in 1990s. In rice paddy fields, the average contents of Cd, Cu, Pb, and Zn in surface soils(0–15 cm depth) were 0.11 mg kg–1(ranged from 0 to 1.01), 4.70 mg kg–1(0–41.59), 4.84 mg kg–1(0–66.44), and 4.47 mg kg–1(0–96.70), respectively. In the uplands, the average contents of Cd, Cu, Pb, Zn,and As in surface soils (0–15 cm depth) were 0.135 mg kg–1(ranged from 0 to 0.660), 2.77 mg kg–1(0.07–78.24), 3.47 mg kg–1(0–43.00), 10.70 mg kg–1(0.30–65.10), and 0.57 mg kg–1(0.21–2.90), respectively. In plastic film houses, the average contents of Cd, Cu, Pb, Zn, and As in surface soil were 0.12 mg kg–1(ranging from 0 to 1.28), 4.82 mg kg–1(0–46.50), 2.68 mg kg–1(0–46.50), 31.19 mg kg–1(0.19–252.0), and 0.36 mg kg–1(0–4.98), respectively. In orchard fields, the averagecontents of Cd, Cu, Pb, Zn, As, and Hg in surface soils (0–20 cm depth) were 0.11 mg kg–1(ranged from 0–0.49), 3.62 mg kg–1(0.03–45.30), 2.30 mg kg–1(0–27.80), 16.60 mg kg–1(0.33–105.50),0.44 mg kg–1(0–4.14), and 0.05 mg kg–1(0.01–0.54), respectively. For polluted soils with over thewarning content levels of heavy metals, fine red earth application, land reconsolidation and soilamelioration such as lime, phosphate, organic manure, and submerging were recommended. For the countermeasure areas, cultivation of non-edible crops such as garden trees, flowers, and fiber crops; landreformation; and heavy application of finered earth (up to 30 cm) were strongly recommended. Landuse techniques should be changed to beharmonious with the environment to increase yield andincome. Soil function characteristics should betaken into account.  相似文献   

20.
Titanium dioxide (TiO2) is a promising sorbent for As removal. There are two main and physico-chemically distinct polymorphs of TiO2 in nature, namely anatase and rutile. Since the difference of arsenic removal by the two polymorphs of TiO2 is now well known, study on the arsenic removal efficiency and the underlying mechanism is of great significance in developing new remediation strategies for As-polluted waters. Here batch experiments were carried out in combination with instrumental analysis of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) to investigate the effects, influential factors and mechanisms of As removal from aqueous solution by two types of nano TiO2 crystals. The adsorption behavior of anatase and rutile for As(V) and As(III) are well described by Freundlich equations. Anatase had higher As removal efficiency and adsorption capacity than rutile. Solution pH had no influence on the As adsorption of anatase TiO2, whereas the As removal by rutile TiO2 was increased by 7?C18% with pH from 4 to 10. Presence of accompanying anions such as phosphate, silicate, nitrate and sulfate, decreased the As(V) and As(III) removal by both crystals, with phosphate being the most effective. However, removal of As by rutile TiO2 was greatly enhanced in the presence of divalent cations i.e. Ca2+ and Mg2+. Shading of light decreased the removal of As(V) and As(III) of anatase by 15.5% and 17.5%, respectively, while a slight increase of As removal was observed in the case of Rutile TiO2. FT-IR characterization of As(V) or As(III)-treated nano TiO2 crystals indicated that both Ti-O and As-O groups participated in As adsorption. Both FT-IR and XPS analysis demonstrated that As(III) was photooxidated into As(V) when adsorbed by anatase under the light condition. Thus, the effect of crystal types and light condition on As removal should be taken into consideration when nano TiO2 is applied for As removal from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号