首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金属铁铝对混凝强化初沉污泥中温厌氧消化的影响   总被引:1,自引:0,他引:1  
选取FeCl3和AlCl3·6H2O作为混凝剂对城市污水进行一级强化混凝处理,降低二级生物处理的进水负荷,减少污水生物处理系统的能量消耗。主要研究混凝过程投加的金属盐对一级强化混凝产生的初沉污泥中温厌氧消化的影响。和剩余污泥相比,初沉污泥更适合厌氧消化处理,污泥降解性能和产气性能更高。当采用城市污水一级强化混凝处理时,污泥中的金属和金属盐水解引起的pH降低,使混凝强化初沉污泥的厌氧消化受到一定抑制。随着污泥中铝含量的降低和铁含量的增加,厌氧消化的COD降解率和挥发性固体(VS)降解率逐渐升高,生物气产量逐渐增大,产气速率加快。当混凝强化初沉污泥只含有铁时(铁含量为10.16 mg/L),混凝强化初沉污泥厌氧消化效果最好,产气稳定,而且产气速率高,生物气产量为237 mL,生物气甲烷含量为55.5%,降解单位VS产气量为0.80 L/g,均高于其他含铝的混凝强化初沉污泥。污泥中的铁对初沉污泥厌氧消化的抑制作用远远小于铝的作用,说明铁盐适合用于城市污水的一级强化混凝处理。  相似文献   

2.
UASB处理硫酸盐有机废水的启动   总被引:1,自引:0,他引:1  
为了考察上流式厌氧污泥床反应器(UASB)处理含硫酸盐有机废水的特性,采用有效容积为10 L的UASB,研究了启动运行过程中COD和SO2-4降解情况、出水VFA和pH值、产气量及颗粒污泥比产甲烷活性(SMA)变化状况。结果表明,接种厌氧颗粒污泥,保持进水COD为1 500 mg/L,SO2-4浓度为100 mg/L,将HRT由24 h缩短至12 h以提高负荷,经历55 d成功启动了UASB反应器;当HRT为12 h,进水COD和SO2-4负荷为3.0 kg/(m3·d)和0.20 kg/(m3·d),COD和SO2-4的去除率分别达到80%和89%,出水VFA为3 mmol/L,产气量达9.5 L/d,颗粒污泥的SMA为86.4 mL/(g VSS·d)。  相似文献   

3.
The objective of the present study was to set up a small-scale pilot reactor at ONGC Hazira, Surat, for capturing CO2 from vent gas. The studies were carried out for CO2 capture by either using microalgae Chlorella sp. or a consortium of microalgae (Scenedesmus quadricauda, Chlorella vulgaris and Chlorococcum humicola). The biomass harvested was used for anaerobic digestion to produce biogas. The carbonation column was able to decrease the average 34 vol.% of CO2 in vent gas to 15 vol.% of CO2 in the outlet gas of the carbonation column. The yield of Chlorella sp. was found to be 18 g/m2/day. The methane yield was 386 l CH4/kg VSfed of Chlorella sp. whereas 228 l CH4/kg VSfed of the consortium of algae.  相似文献   

4.
pH值对污泥发酵产酸的影响   总被引:1,自引:0,他引:1  
利用剩余污泥厌氧发酵产生挥发性脂肪酸,可作为污水脱氮除磷的有机碳源,而pH值是发酵产酸过程中重要的控制参数.研究了不同pH值条件下剩余污泥厌氧发酵产酸过程中各参数变化规律,探索pH值对其过程的影响及其分析.结果表明,碱性条件有利于污泥发酵产酸过程,实验最佳条件是控制反应初始pH值为10.0,仅8d发酵挥发性脂肪酸浓度就达到8.90 mmol/L.此外,污泥在发酵过程中,酸性条件下NH4+-N和PO43--P的释放量均大于碱性条件.  相似文献   

5.
选取FeCl3和AlCl2·6H2O作为混凝剂对城市污水进行一级强化混凝处理,降低二级生物处理的进水负荷,减少污水生物处理系统的能量消耗。主要研究混凝过程投加的金属盐对一级强化混凝产生的初沉污泥中温厌氧消化的影响。和剩余污泥相比,初沉污泥更适合厌氧消化处理,污泥降解性能和产气性能更高。当采用城市污水一级强化混凝处理时,污泥中的金属和金属盐水解引起的pH降低,使混凝强化初沉污泥的厌氧消化受到一定抑制。随着污泥中铝含量的降低和铁含量的增加,厌氧消化的COD降解率和挥发性固体(Vs)降解率逐渐升高,生物气产量逐渐增大,产气速率加快。当混凝强化初沉污泥只含有铁时(铁含量为10.16mg/L),混凝强化初沉污泥厌氧消化效果最好,产气稳定,而且产气速率高,生物气产量为237mL,生物气甲烷含量为55.5%,降解单位Vs产气量为0.80L/g,均高于其他含铝的混凝强化初沉污泥。污泥中的铁对初沉污泥厌氧消化的抑制作用远远小于铝的作用,说明铁盐适合用于城市污水的一级强化混凝处理。  相似文献   

6.
In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12–0.21 %?w/v) and yeast extract (0.12–0.3 %?w/v) and relatively high wheat bran (~5–6 %?w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B 2 showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.  相似文献   

7.
The success of enhanced biological phosphorus removal (EBPR) depends on the constant availability of volatile fatty acids (VFAs). To reduce costs, waste streams would be a preferred source. Since VFAs were shown to vary in the incoming sewage and fermentate from primary sludge the next available source is waste activated sludge (WAS). The opportunity is particularly good in plants where WAS is stored before shipment. Little information is however available on the rate of VFA release from such sludge, especially at the lower temperatures and under the storage conditions typically found in colder climates. Bench-scale batch tests were performed to investigate the effect of temperature and requirement for mixing on VFA generation from WAS generated in full scale non-EBPR wastewater treatment plant. WAS fermentation was found highly temperature-dependent. Hydrolysis rate constant (kh) values of 0.17, 0.08 and 0.04 d−1 at 24.6, 14 and 4 °C were obtained, respectively. Arrhenius temperature coefficient was calculated to be 1.07. It took 5 d to complete hydrolysis at 24.6 °C, 7 d at 14 °C, and 9 d at 4 °C. The fermentation lasted for 20 d. At 24.6 °C the mixed reactor reached 84% of the overall VFA production only in 5 d. When temperature dropped to 14 and 4 °C, the ratio of VFA production at day 10 to overall VFA production in the mixed reactor were 62% and 48%, respectively. The overall VFA-COD concentration in the non-mixed reactors was much lower than the mixed reactors. The information is important for the designer as there was uncertainty with the effect of temperature and mixing on sludge fermentation.  相似文献   

8.
Integration of algal biofuel production to wastewater anaerobic digestion infrastructure has the potential to increase biogas production, decrease high and variable internal nitrogen loads, and improve sludge digestibility and dewaterability. In this research, two species of microalgae, Spirulina platensis and Chlorella sp., were grown on sludge centrate and a centrate and nitrified wastewater effluent mixture. Harvested algae were co-digested with waste activated sludge (WAS) at varying ratios. High-growth (6.8 g m(-2) x d(-1)), nitrogen (36.5 g m(-3) x d(-1)), and phosphorus (6.5 g m(-3) x d(-1)) uptake rates were achieved with Chlorella on centrate. No growth was observed with S. platensis under the same conditions; however, both organisms grew well on the centrate and effluent mixture. Co-digestion of algae with WAS improved volatile solids reduction. Although co-digestion with S. platensis improved biosolids dewaterability, Chlorella had a slight negative effect on dewaterability compared to WAS alone. The efficiency of energy conversion from photons to biogas generated from Chlorella was estimated at 1.4%.  相似文献   

9.

Four different mixed fuels consisted of leather waste, coal, and sewage sludge were combusted in a lab-scale entrained flow fluidized bed furnace. The influence of blending ratio on emission characteristics of SO2, NOx, HCl, particulate matter (PM), heavy metals, and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was studied. Results showed that the mixing of coal with sewage sludge had a complex effect on the emission characteristics. On the one hand, with more sewage sludge blending in the mixed fuel, the acid gas pollutant (SO2, NOx) decreased a lot, and the recovery of volatile heavy metals (Cd, Pb) increased at the same time. Furthermore, the leaching toxicity of Cr in the fly ash and bottom ash went down below the national standard with the adding of sewage sludge. On the other hand, the mixing of sewage sludge which consisted of more ash content resulted in the increase of the PM emission. Moreover, the high content of Cu and chlorine in the sewage sludge can promote the formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) when the fuel 3 and 4 were combusted. Most importantly, the concentration of toxic PCDD/Fs in the flue gas produced from fuel 3 and fuel 4 was successfully controlled down below 0.20 ng I-TEQ/Nm3 by the active carbon.

  相似文献   

10.
Abstract

This study was conducted to evaluate the performance of an innovative two-stage process, BIOCELL, that was developed to produce hydrogen (H2) and methane (CH4) from food waste on the basis of phase separation, reactor rotation mode, and sequential batch technique. The BIOCELL process consisted of four leaching-bed reactors for H2 recovery and post-treatment and a UASB reactor for CH4 recovery. The leaching-bed reactors were operated in a rotation mode with a 2-day interval between degradation stages. The sequential batch technique was useful to optimize environmental conditions during H2 fermentation. The BIOCELL process demonstrated that, at the high volatile solids (VS) loading rate of 11.9 kg/m3-day, it could remove 72.5% of VS and convert VSremoved to H2 (28.2%) and CH4 (69.9%) on a chemical oxygen demand (COD) basis in 8 days. H2 gas production rate was 3.63 m3/m3 ·day, while CH4 gas production rate was 1.75 m3/m3 ·day. The yield values of H2 and CH4 were 0.31 and 0.21 m3/kg VSadded, respectively. Moreover, the output from the post-treatment could be used as a soil amendment. The BIOCELL process proved to be stable, reliable, and effective in resource recovery as well as waste stabilization.  相似文献   

11.
为了提高木质纤维素生物质的甲烷产率,固体厌氧发酵以及预处理技术得到了广泛应用。本研究以水生植物菹草为例,探讨了厌氧固体发酵同步碱处理提高甲烷产率的可行性。采用2种来源的微生物(厌氧污泥和牛粪),初始生物质浓度为20%TS(total solid,总固体重量),考察不同的NaOH添加量(基于反应体系总TS 0%、2.0%、3.5%和5.0%)对菹草厌氧发酵产气和固体水解效率的影响。结果表明,与对照实验组相比,初始NaOH加入量为3.5%时,接种污泥和牛粪的实验组中甲烷总产量分别为787.1 mL和1 165.4 mL,与对照实验组相比(619.1 mL和834.8 mL),分别提高了27.1%和39.6%,而且接种牛粪的实验组中单位挥发性固体(VS)产甲烷率最高,为186.5 mL/g。对发酵后的木质纤维素残渣组分进行分析,结果表明,NaOH有助于促进菹草中纤维素及半纤维素的分解,以及木质素结构的破坏,从而提高了菹草厌氧发酵产气产甲烷效率。  相似文献   

12.
IC反应器处理高浓度硫酸盐废水的启动研究   总被引:3,自引:0,他引:3  
采用木糖生产废水,进行了(IC)反应器处理高浓度硫酸盐有机废水的启动研究.结果表明,接种厌氧颗粒污泥,当进水COD/SO2-4值约为3.5时,控制COD负荷提高幅度为每次20%左右,经过26 d的驯化培养,COD和SO2-4负荷分别可达20 kg/(m3·d)和5.5 kg/(m3·d),COD去除率达到80%以上,硫...  相似文献   

13.
The nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) which occurred after the Great East Japan Earthquake on March 11, 2011 resulted in releases of radionuclides such as 134Cs (half-life:T1/2 = 2.06 yr), 137Cs (T1/2 = 30.04 yr) and 131I (T1/2 = 8.05 d) to the environment. For this paper, we observed the monthly variations of radiocesium (134Cs and 137Cs) and stable Cs concentrations in influent, effluent, sewage sludge, and sludge ash collected from a sewage treatment plant 280 km north of the FDNPP from July to December, 2011. Using the stable Cs results, we concluded the mass balance of Cs in the sewage treatment plant showed that about 10% of the Cs entering the sewage treatment plant would be transferred to the sewage sludge, and then Cs in the sewage sludge was totally recovered in the sludge ash. The behavior of Cs was similar to that of Rb, but it was not similar to that of K in the sewage treatment process.  相似文献   

14.
Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl2 solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g?1 fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g?1 fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.  相似文献   

15.
剩余污泥超声预处理后水解酸化特性   总被引:3,自引:2,他引:1  
为探讨剩余污泥超声预处理后的水解酸化特性,考察了0.6 W/mL、5 min和1 W/mL、5 min 2种超声预处理条件下污泥水解酸化过程有机质、氮、磷的释放情况。实验结果表明,2种超声预处理均可促进污泥水解酸化,并且0.6 W/mL比1 W/mL的超声预处理更有利于SCOD的释放、VFAs的产生以及氮和磷的释放;水解酸化初期,超声预处理比未经超声预处理的污泥在有机质、氮、磷释放率上差异非常明显,随着水解酸化的进行,有机质和氮释放率差异仍很明显,而磷释放程度逐渐接近;经0.6 W/mL超声预处理,污泥水解酸化3 d后,SCOD释放率、VFAs浓度、TN释放率和NH4+-N释放率分别是未经处理污泥的1.85、2.63、1.85和1.41倍,而TP和PO43--P释放率较未经处理污泥仅分别多2.44和1.23个百分点。研究表明,控制适宜的声能密度、超声时间和水解酸化进程是超声预处理强化剩余污泥水解酸化效果的关键。  相似文献   

16.
Food wastes have been recognized as the largest waste stream and accounts for 39.25 % of total municipal solid waste in Thailand. Chulalongkorn University has participated in the program of in situ energy recovery from food wastes under the Ministry of Energy (MOE), Thailand. This research aims to develop a prototype single-stage anaerobic digestion system for biogas production and energy recovery from food wastes inside Chulalongkorn University. Here, the effects of sludge recirculation rate and mixing time were investigated as the main key parameters for the system design and operation. From the results obtained in this study, it was found that the sludge recirculation rate of 100 % and the mixing time of 60 min per day were the most suitable design parameters to achieve high efficiencies in terms of chemical oxygen demand (COD), total solids (TS), and total volatile solid (TVS) removal and also biogas production by this prototype anaerobic digester. The obtained biogas production was found to be 0.71 m3/kg COD and the composition of methane was 61.6 %. Moreover, the efficiencies of COD removal were as high as 82.9 % and TVS removal could reach 83.9 % at the optimal condition. Therefore, the developed prototype single-stage anaerobic digester can be highly promising for university canteen application to recover energy from food wastes via biogas production.  相似文献   

17.
Understanding the removal mechanisms and kinetics of trace tetracycline by activated sludge is critical to both evaluation of tetracycline elimination in sewage treatment plants and risk assessment/management of tetracycline released to soil environment due to the application of biosolids as fertilizer. Adsorption is found to be the primary removal mechanism while biodegradation, volatilization, and hydrolysis can be ignored in this study. Adsorption kinetics was well described by pseudo-second-order model. Faster adsorption rate (k 2?=?2.04?×?10?2?g?min?1?μg?1) and greater adsorption capacity (q e?=?38.8 μg?g?1) were found in activated sludge treating freshwater sewage. Different adsorption rate and adsorption capacity resulted from chemical properties of sewage matrix rather than activated sludge surface characteristics. The decrease of tetracycline adsorption in saline sewage was mainly due to Mg2+ which significantly reduced adsorption distribution coefficient (K d) from 12,990?±?260 to 4,690?±?180 L?kg?1. Species-specific adsorption distribution coefficients followed the order of $ K_{\mathrm{d}}^{{ + 00}} \gg K_{\mathrm{d}}^{{ + - 0}} > K_{\mathrm{d}}^{{ + - - }} $ . Contribution of zwitterionic tetracycline to the overall adsorption was >90 % in the actual pH range in aeration tank. Adsorption of tetracycline in a wide range of temperature (10 to 35 °C) followed the Freundlich adsorption isotherm well.  相似文献   

18.
Dimethoate [O, O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate] is a broad-spectrum systemic insecticide currently used worldwide and on many vegetables in Kentucky. Dimethoate is a hydrophilic compound (log KOW = 0.7) and has the potential of offsite movement from the application site into runoff and infiltration water. The dissipation patterns of dimethoate residues were studied on spring broccoli leaves and heads under field conditions. Following foliar application of Dimethoate 4E on broccoli foliage at the rate of 0.47 L acre?1, dimethoate residues were monitored in soil, runoff water collected down the land slope, and in infiltration water collected from the vadose zone. The study was conducted on a Lowell silty loam soil (pH 6.9) planted with broccoli under three soil management practices: (i) soil mixed with municipal sewage sludge, (ii) soil mixed with yard waste compost, and (iii) no-mulch rototilled bare soil. The main objective of this investigation was to study the effect of mixing native soil with municipal sewage sludge or yard waste compost, having considerable amounts of organic matter, on off-site movement of dimethoate residues into runoff and infiltration water following spring rainfall. The initial deposits of dimethoate were 6.2 and 21.4 μ g g?1 on broccoli heads and leaves, respectively. These residues dissipated rapidly and fell below the maximum residue limit of 2 μ g g?1 on the heads and leaves after 10 and 14 d, respectively, with half-lives of 5.7 d on broccoli heads and 3.9 d on the leaves. Dimethoate residues detected in top 15 cm of soil (due to droplet drift and wash off residues from broccoli foliage) one day (d) following spraying, were 30.5 ng g?1 dry soil in the sewage sludge treatment, and 46.1 and 134.5 ng g?1 dry soil in the yard waste and no mulch treatments, respectively. Water infiltration was greater from yard waste compost treatment than from no mulch treatment, however concentrations of dimethoate in the vadose zone of the three soil treatments did not differ.  相似文献   

19.
Abstract

The neutralization of wastewater treatment residues is an issue for many countries. The European Union (EU) legal regulations have limited the use of the residues in agriculture and implemented a ban for their disposal. Therefore, urgent action should be taken to find solutions for the safe disposal of sewage sludge. The problem refers in particular to the new EU member countries, including Poland, where one can now observe an intensive development of sewage system networks and new sewage treatment plants. At the same time, these countries have few installations for thermal sewage sludge utilization (e.g., there is only one installation of that type in Poland). Simultaneously, there are many coal-fired mechanical stoker-fired boilers in some of these countries. This paper presents suggestions for the production of granulated fuel from sewage sludge and coal slime. Additionally, among others, lime was added to the fuel to decrease the sulfur compounds emission. Results are presented of research on fuel with two average grain diameters (~15 and 35 mm). The fuel with such diameters is adapted to the requirements of the combustion process taking place in a stokerfired boiler. The research was aimed at identifying the behavior of the burning fuel, with special attention paid to its emission properties (e.g., to the emissions of oxides of nitrogen [NOx], sulfur dioxide [SO2], and carbon mon-oxide [CO], among others). The concentration and emission values were compared with similar results obtained while burning hard coal. The combustion process was carried out in a laboratory stand where realization of the large-scale tests is possible. The laboratory stand used made simulation possible for a wide range of burning processes in mechanical stoker-fired boilers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号