首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
Interactions of carbamazepine in soil: effects of dissolved organic matter   总被引:2,自引:0,他引:2  
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils.  相似文献   

2.
Sorption of dissolved organic matter (DOM) plays an important role in maintaining the fertility and quality of soils in agricultural ecosystems. Few studies have examined the effects of decomposition on DOM sorption and chemical characteristics. This study investigated the sorption to goethite (alpha-FeOOH) of fresh and decomposed hydrophilic (HPL) and hydrophobic (HPB) DOM fractions extracted from the shoots and roots of crimson clover (Trifolium incarnatum L.), corn (Zea mays L.), soybean [Glycine max (L.) Merr.], hairy vetch (Vicia villosa L.), and dairy and poultry manures. Sorption was positively related to apparent molecular weight (MWAP), aromaticity as measured by absorptivity at 280 nm, and phenolic acid content. A 10-d laboratory microbial decomposition of the source organic matter generally increased the sorption of the extracted DOM onto goethite. The decomposition effect on sorption was greater for the HPL fractions than for the HPB fractions. There was a decrease in the MWAP values of the DOM samples following sorption to goethite. In many cases the reduction in MWAP was large, indicating a strong preference by goethite for the higher MWAP DOM fractions. The results of this laboratory-based research demonstrate that microbial processes affect the chemical characteristics of DOM which may affect the distribution of soil organic C pools.  相似文献   

3.
The agricultural practice of amending soils with composted municipal solid waste (MSW) adds significant amounts of organic matter and trace metals, including Cd. Under these conditions, soluble organic complexes of Cd formed in the compost may be more significant than previously thought, due to Cd bioavailability and mobility in the soil environment. To study the relative importance of different types of organic ligands in MSW compost for the binding of Cd, six fractions of the dissolved organic matter (DOM) in addition to humic acid (HA) and fulvic acid (FA) were extracted and their complexation of Cd quantified at pH 7 using an ion-selective electrode (ISE). The highest complexing capacities (CC) for Cd were found for the most humified ligands: HA (2386 micromol Cd g(-1) C of ligand), predialyzed FA (2468 micromol Cd g(-1) C), and HoA, a fulvic-type, easily soluble fraction (1042 micromol Cd g(-1) C). The differences in CC for Cd of the various organic ligands were not directly related to total acid-titratable or carboxylic groups, indicating the importance of sterical issues and other functional groups. The strength of association between Cd and the organic ligands was characterized by calculating stability constants for binding at the strongest sites (pK(int)) and modeling the distribution of binding site strengths. The pK(int) values of the DOM fractions ranged between 6.93 (HiN: polysaccharides) and 8.11 (HiB: proteins and aminosugars), compared with 10.05 for HA and 7.98 for FA. Hence, the highly complex and only partially soluble organic molecules from compost such as HA and FA demonstrated the highest capacity to sequester Cd. However, strong Cd binding of organic ligands containing N-functional groups (HiB) in addition to a high CC of soluble, humified ligands like HoA indicated the relevance of these fractions for the organic complexation of Cd in solution.  相似文献   

4.
Interaction of Cu with dissolved organic matter (DOM) is an important physicochemical process affecting Cu mobility in soils. The aim of this study was to investigate the effects of DOM from anaerobically digested dewatered sludge and sludge compost on the sorption of Cu on an acidic sandy loam and a calcareous clay loam. In the presence of DOM, Cu sorption capacity decreased markedly for both soils, especially for the calcareous soil. The Cu sorption isotherms could be well described by the Freundlich equation (r2 = 0.99), and the binding intensity parameter of soils in the presence of sludge DOM was lower than compost DOM. An increase in DOM concentration significantly reduced the sorption of Cu by both soils. Within the Cu and DOM concentration range studied, the decrease in Cu sorption caused by sludge DOM was consistently greater than that of compost DOM. This might be attributed to the greater amount of hydrophobic fraction of DOM in the compost. Moreover, the reduction of Cu sorption caused by DOM was more obvious in the soil with higher pH. In addition, the sorption of Cu increased with an increase in pH for both soils without the addition of DOM, while Cu sorption in the presence of DOM was unexpectedly decreased with an increase in pH at a pH >6.8. This implied that DOM produced by sludge or other C-enriched organic wastes heavily applied on calcareous soils might facilitate the leaching loss of Cu because of the formation of soluble DOM-metal complexes.  相似文献   

5.
Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM.  相似文献   

6.
Irrigation with treated wastewaters as an alternative in countries with severe water shortage may influence the sorption of pesticides and their environmental effects, as wastewater contains higher concentrations of suspended and dissolved organic matter and inorganic compounds than freshwater. We have examined the sorption behaviour of three highly hydrophobic pesticides (the herbicide pendimethalin and the insecticides α-cypermethrin and deltamethrin) on a Mediterranean agricultural soil using the batch equilibration method. We considered wastewater, extracts from urban sewage sludge with different dissolved organic carbon contents, and inorganic salt solutions, using Milli Q water as a control. All pesticides were strongly retained by soil although some sorption occurred on the walls of the laboratory containers, especially when wastewater and inorganic salt solutions were used. The calculation of distribution constants by measuring pesticide concentrations in soil and solution indicated that pendimethalin sorption was not affected whereas α-cypermethrin and deltamethrin retention were significantly enhanced (ca. 5 and 2 times, respectively) when wastewater or salt solutions were employed. We therefore conclude that the increased sorption of the two pesticides caused by wastewater cannot be only the result of its dissolved organic carbon content, but also of the simultaneous presence of inorganic salts in the solution.  相似文献   

7.
Naturally occurring dissolved organic matter (DOM) and biosolids-derived DOM have been implicated in the mobility of metals in soils and aquifer materials. To investigate the effect of DOM on copper mobility in aquifer material, DOM derived from sewage biosolids was separated into two apparent molecular-weight (MW) fractions, 500 to 3500 Da (LMW) and > 14 000 Da (HMW). In each MW fraction, the DOM was further fractionated into hydrophilic, hydrophobic acid, and hydrophobic neutral compounds by an XAD-8 chromatography technique. The mobility of these DOM components and their influences on copper transport in a sesquioxide-coated, sandy aquifer material were examined with column transport experiments. The LMW DOM was found to be highly mobile, whereas the HMW DOM had a greater tendency to be retained by the aquifer material. Within the same MW fraction, the mobility of DOM followed the order of hydrophilic DOM > hydrophobic acid DOM > hydrophobic neutral DOM. Copper breakthrough curves in the presence of various DOM components showed that, except for the HMW hydrophilic fraction, DOM components enhanced Cu transport through the aquifer columns at early stages of transport (the first 75 pore volumes). In the later stages, however, all the DOM components substantially inhibited Cu mobility. We hypothesize that several mechanisms could account for retardation of Cu movement in the presence of the DOM fractions, including the formation of ternary complexes between the aquifer material, Cu, and DOM; changes in the electrostatic potential at the solid-phase surface; and pH buffering by DOM.  相似文献   

8.
Residues of pharmaceutical antibiotics are found in the environment, whose fate and effects are governed by sorption. Thus, the extent and mechanisms of the soil sorption of p-aminobenzoic acid and five sulfonamide antibiotics (sulfanilamide, sulfadimidine, sulfadiazine, sulfadimethoxine, and sulfapyridine) were investigated using topsoils of fertilized and unfertilized Chernozem and their organic-mineral particle-size fractions. Freundlich adsorption coefficients (K(f)) ranged from 0.5 to 6.5. Adsorption increased with aromaticity and electronegativity of functional groups attached to the sulfonyl-phenylamine core. Adsorption to soil and particle-size fractions increased in the sequence: coarse silt < whole soil < medium silt < sand < clay < fine silt and was influenced by pH. Sorption nonlinearity (1/n 相似文献   

9.
Two environmental aspects associated with land application of poultry litter that have not been comprehensively evaluated are (i) the competition of dissolved organic matter (DOM) and P for soil sorption sites, and (ii) the sorption of dissolved organic nitrogen (DON) relative to inorganic nitrogen species (e.g., NO(3)(-) and NH(4)(+)) and dissolved organic carbon (DOC). The competition between DOM and P for sorption sites has often been assumed to increase the amount of P available for plant growth; however, elevating DOM concentrations may also increase P available for transport to water resources. Batch sorption experiments were conducted to (i) evaluate soil properties governing P sorption to benchmark soils of Southwestern Missouri, (ii) elucidate the impact of poultry litter-derived DOM on P sorption, and (iii) investigate DON retention relative to inorganic N species and DOC. Soils were reacted for 24 h with inorganic P (0-60 mg L(-1)) in the presence and absence of DOM (145 mg C L(-1)) using a background electrolyte solution comparable to DOM extracts (I = 10.8 mmol L(-1); pH 7.7). Soil P sorption was positively correlated with metal oxide (r(2) = 0.70) and clay content (r(2) = 0.79) and negatively correlated with Bray-1 extractable P (r(2) = 0.79). Poultry litter-derived DOM had no significant negative impact on P sorption. Dissolved organic nitrogen was preferentially removed from solution relative to (NO(3)(-)-N + NO(2)(-)-N), NH(4)(+)-N, and DOC. This research indicates that poultry litter-derived DOM is not likely to enhance inorganic P transport which contradicts the assumption that DOM released from organic wastes increases plant-available P when organic amendments and fertilizer P are co-applied. Additionally, this work demonstrates the need to further evaluate the fate and transport of DON in agroecosystem soils receiving poultry litter applications.  相似文献   

10.
The soil lipid fraction can play an important role in the sorption of organic compounds. In this study, the impact of the lipid fraction of freshwater- and wastewater-irrigated soils on the sorption of non- and relatively polar compounds was assessed. Lipid analyses revealed a clear difference between the two lipid fractions. The lipid extract from the wastewater-irrigated soil was consistent with mainly straight paraffinic chain materials; the lipid extract from freshwater-irrigated soil, on the other hand, exhibited stronger signals of aromatics, double bonds, ester, ether, and methyl, in addition to a smaller contribution from methylene protons. Our data suggest that lipid removal induced a stronger increase in the soil's sorption affinity for solutes capable of polar interactions such as atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) and chlorotoluron (N'-(3-chloro-4-methylphenyl)-N,N-dimethylurea) as compared to phenanthrene. Moreover, the level of increase in sorption affinities due to lipid removal was much higher for the freshwater-irrigated soil than for its wastewater-irrigated counterpart, even though the level of lipids in the freshwater-irrigated soil was half that in the wastewater-irrigated one (6 vs. 11% of the total organic C). The higher level of polar functionalities, such as ether and ester moieties, in the lipid fraction from the freshwater-irrigated soil suggests that these extractable compounds compete successfully with the polar solutes (atrazine and chlorotoluron) for specific binding sites in the soil organic matter (SOM). It appears that the composition of the lipid fraction may be a key consideration in unraveling the sorption of organic molecules in soils.  相似文献   

11.
Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics.  相似文献   

12.
Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil organic matter (SOM), but the exact mechanisms are unknown. Our objective was to provide insight into the sorption mechanism of HOCs in SOM by studying the sorption-desorption processes of naphthalene in a mineral soil, its humic fractions, and lignin. Additionally, humin and lignin were used for studying the effects of temperature and cosolvent on HOC sorption. All isotherms were nonlinear. The humin and lignin isotherms became more linear at elevated temperatures and with the addition of methanol indicating a condensed to expanded structural phase transition. Isotherm nonlinearity and hysteresis increased in the following order: soil humic acid (HA) < soil < soil humin. Of the samples, aliphatic-rich humin exhibited the largest degree of nonlinearity and had the highest sorption capacity for naphthalene. High nonlinearity and hysteresis in humin were most likely caused by its condensed structure. A novel aliphatic, amorphous condensed conformation is proposed. This conformation can account for both high sorption capacities and increased nonlinearity observed for aliphatic-rich samples and can explain many sorption disparities discussed in the literature. This study clearly illustrates the importance of both aliphatic and aromatic moieties for HOC sorption in SOM.  相似文献   

13.
Although most of the organic carbon in soils and sediments may be composed of humic substances, their interaction with other compounds, especially their sorption interactions, may be significantly affected by the presence of small amounts of the other components of natural organic matter (NOM). In this investigation, the influence of the lipid fraction of NOM on the sorption thermodynamics of fluorene, phenanthrene, and pyrene to several geosorbent samples was examined before and after extraction of lipids. Batch experiments were performed at the same concentration for all polycyclic aromatic hydrocarbons (PAHs) (0.025 x their solubility in water) at different temperatures (10, 20, 30, and 40 degrees C), and the thermodynamic parameters were calculated. Removal of the lipids increases the sorption capacity of the samples as well as the exothermicity of the process. The free energy change was negative for all the samples and no significant differences were noticed on lipid removal. The entropy changes were small and positive for the whole geosorbent samples, but even smaller or more negative when the lipids were removed. This indicates that the interaction of PAHs with soils and sediments in the absence of extractable lipids is stronger and the mechanisms involved may be different, changing from a partitioning-like mechanism to specific adsorption. Because of the competition between lipids and PAHs for the same sorption sites, the lipids can be viewed as an "implicit sorbate."  相似文献   

14.
The increased use of animal waste-derived effluents for irrigation could result in the enhanced movement of pesticides through complexation with dissolved organic materials. Batch equilibrium studies were conducted to measure the interaction among soil, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate], and dissolved organic matter (DOM) from poultry, swine, and cow waste-derived lagoon effluents. All DOM was found to have a strong affinity for chlorpyrifos, resulting in reduced sorption of chlorpyrifos by soil, thus the potential for DOM-enhanced mobility. Effluent DOM was observed to sorb to soils. Thus, for increasingly higher soil mass to solution volume ratios, the effect of chlorpyrifos association with water-borne DOM on sorption decreases significantly. For high soil mass to solution volume ratios typical of soil profiles in the landscape, the potential for DOM-enhanced transport will be greatly attenuated. Dissolved organic matter concentration and the nonpolar nature of DOM in the lagoon effluent decreased with increasing residence time in the cells of the lagoon system, thus reducing the potential for DOM-enhanced transport.  相似文献   

15.
Mineral surfaces can alter the ability of humic substances (HS) to bind hydrophobic organic contaminants. In this study, complete adsorption (i.e., to avoid HS adsorptive fractionation effects) of a small subset of well-characterized terrestrial and aquatic HS on kaolinite and hematite significantly changed their subsequent organic carbon-normalized partition coefficients K(ads)(oc) for pyrene relative to their original respective dissolved organic carbon-normalized partition coefficients K(dis)(oc). Parallel experiments with ultrafiltration (UF) fractions obtained from purified Aldrich humic acid (PAHA) (Aldrich Chemical, Milwaukee, WI) gave similar results. The heterogeneity among the PAHA UF fractions was examined via their mineral surface adsorption characteristics and their subsequent ability to bind pyrene. As expected, variations in maximum adsorption densities (q(max)), Langmuir adsorption constants (K(q)), and pyrene K(ads)(oc) values were observed among the PAHA UF fractions. However, general trends of q(max), K(q), and pyrene log K(ads)(oc) values for the PAHA UF fractions versus the logarithm of their weight-average molecular weights (MW(w)) did not typically match the corresponding trends obtained with the four aquatic and terrestrial HS. In general, an ideal mixture competitive adsorption model gave reasonable predictions for PAHA sorption to kaolinite and hematite based on their corresponding UF isotherm parameters. Ideal mixture predictions of pyrene partitioning to adsorbed PAHA from the corresponding UF fraction results were better for kaolinite versus hematite, indicating that the underlying mineral surface can alter the effects of HS heterogeneity on hydrophobic organic contaminant sorption.  相似文献   

16.
The solubilization of phenanthrene (PHE) and pyrene (PYR) by rhamnolipid biosurfactant was systematically investigated. The solubilities of both polycyclic aromatic hydrocarbons (PAHs) were increased linearly with the biosurfactant concentration at above critical micelle concentration. A competitive effect was observed between PHE and PYR. The solubility of PHE in a mixed system was lower than that in a single PAH system, whereas the solubility of PYR in a mixed system was enhanced. This is because the hydrophobicity of PYR is higher than that of PHE, so PYR is favored in the competitive solubilization. The combined effect of biosurfactant and dissolved organic matter (DOM) on PAH solubilization was also examined. Two kinds of DOM (derived from soil and from compost) were used. There was an obvious enhancement of solubility for PHE and PYR in systems with concurrence of DOM and biosurfacrant compared with systems with only DOM or biosurfactant; however, the enhancement in the mixed system was less than their additive. This could be explained as the formation of a DOM-biosurfactant complex. In addition, the solubility enhancement of PAHs in a compost-DOM system was higher than that in a soil-DOM system. This could be explained as functional group differences of two DOM types.  相似文献   

17.
Oxytetracycline sorption to organic matter by metal-bridging   总被引:11,自引:0,他引:11  
The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups.  相似文献   

18.
Several solid-state 13C nuclear magnetic resonance (NMR) techniques were used to characterize soil organic matter spiked with 13C-labeled organic compounds spanning a range of hydrophobicities (benzoic acid, benzophenone, naphthalene, phenanthrene, and palmitic acid). The chemical shifts of NMR resonances of the sorbed species were shifted by up to 3 ppm relative to those of the neat compounds. Sorption also resulted in increased resonance linewidth for the compounds containing a single 13C label, indicating the presence of a range of different chemical environments at the sites of sorption. On the other hand, sorption decreased the linewidth of the resonance of naphthalene, which was uniformly 13C-labeled. This was attributed to the removal of intermolecular 13C-13C dipolar coupling. Heterogeneity of the organic matter was demonstrated using the spectral editing technique proton spin relaxation editing (PSRE), which enabled the identification and quantification of charcoal-rich domains characterized by rapid rates of proton spin-lattice relaxation in the static frame (T1H), and humic domains characterized by slow rates of T1H relaxation. Furthermore it was demonstrated that the sorbed 13C-labeled molecules "inherit" the T1H "signature" of the organic matrix in their immediate vicinity. Thus PSRE on the spiked soils enabled evaluation of the relative affinity of the two domain types for the sorbate molecules. The charcoal-rich domains were shown to have a twofold to tenfold greater affinity for the organic compounds, with greater differences found for the more hydrophobic compounds.  相似文献   

19.
The soil organic partition coefficient (Koc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting Koc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the Koc of hydrophobic organic chemicals (HOCs), over a log Koc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k'w) could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k'w) with various volume fractions of methanol (symbol in text). The important effects of solute activity coefficients in water on k'w and Koc were illustrated. Hence, the correlation between log Koc and log k'w (and log k') exists in the soil. The correlation coefficient (r) of the log Koc vs. log k'w correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log Koc -log k' correlations were no less than 0.968, with (symbol in text)ranging from 0 to 0.50. The smaller the (symbol in text), the higher the r. Therefore, it is recommended that the eluent of smaller (symbol in text), such as water, be used for accurately estimating Koc. Correspondingly, the r value of the log Koc -log k'w correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict Koc indirectly from a correlation with k'w than the reversed-phase liquid chromatographic (RPLC) one.  相似文献   

20.
Environmental residues of aromatic ionizable organic compounds (AIOCs) have received considerable attention due to their potential human health and ecological risks. The main objective of this study was to investigate the key factors and mechanisms controlling sorption of a series of anionic and zwitterionic AIOCs (two aromatic sulfonates, 4-methyl-2,6-dinitrophenol, tetracycline, sulfamethoxazole, and tannic acid) to montmorillonites modified with hexadecyltrimethyl ammonium (HDTMA) and polydiallyldimethyl ammonium (PDADMA). Compared with naphthalene (a nonpolar and nonionic solute), all AIOCs showed stronger sorption (the sorbent-to-solution distribution coefficient was in the order of 10-10 L kg) to the two organoclays in spite of the much lower hydrophobicity, indicating the predominance of electrostatic interaction in sorption. The proposed electrostatic mechanism of the tested AIOCs was supported by the pH dependency of sorption to the two organoclays. The two organoclays manifested weaker sorption affinity but faster sorption kinetics for bulky AIOCs than commercial activated carbon, resulting from the high accessibility of sorption sites in the open, ordered clay interlayer. The findings of this study highlight the potential of using HDTMA- and PDADMA-exchanged montmorillonites as effective sorbents for AIOCs in water and wastewater treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号