首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Brassica juncea, or Indian mustard, was grown in soil artificially contaminated with either a soluble salt, CdCl(2), at 186mg Cdkg(-1), or alternately an insoluble, basic salt, CdCO(3), at 90mg Cdkg(-1). These experiments study the range of Cd uptake by Indian mustard from conditions of very high Cd concentration in a soluble form to the other extreme with an insoluble Cd salt. After plants were established, four different chelating agents were applied. Chelating agents increased plant uptake of Cd from the CdCl(2) soil but did not significantly increase plant uptake of Cd from the CdCO(3) contaminated soil. Addition of ethylenediaminetetraacetic acid (EDTA) increased the plant concentration of Cd by almost 10-fold in soils contaminated with CdCl(2), with a concentration of 1283mg Cdkg(-1) in the dried EDTA-treated plants over a concentration of 131mg Cdkg(-1) in plants without added chelate. However, EDTA increased the aqueous solubility of Cd by 36 times over the soil matrix without added chelator, and thereby, increased the possibility of leaching. Other chelators used in both experiments were ethylenebis(oxyethylenenitrilo)tetraacetic acid, trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid, and diethylenetriaminepentaacetic acid (DTPA) increasing Cd in plants to 1240, 962, and 437mg Cdkg(-1), respectively. The other chelating agents increased the solubility of Cd in the leachate but not to the extent of EDTA. Comparing all chelating agents studied, DTPA increased plant uptake in terms of Cd in dried plant concentration most relative to the solubility of complexed Cd in runoff water.  相似文献   

2.
Effects of lead (Pb) and chelators, such as EDTA, HEDTA, DTPA, NTA and citric acid, were studied to evaluate the growth potential of Sesbania drummondii in soils contaminated with high concentrations of Pb. S. drummondii seedlings were grown in soil containing 7.5 g Pb(NO(3))(2) and 0-10 mmol chelators/kg soil for a period of 2 and 4 weeks and assessed for growth profile (length of root and shoot), chlorophyll a fluorescence kinetics (F(v)/F(m) and F(v)/F(o)) and Pb accumulations in root and shoot. Growth of plants in the presence of Pb+chelators was significantly higher (P<0.05) than the controls grown in the presence of Pb alone. F(v)/F(m) and F(v)/F(o) values of treated seedlings remained unaffected, indicating normal photosynthetic efficiency and strength of plants in the presence of chelators. On application of chelators, while root uptake of Pb increased four-five folds, shoot accumulations increased up to 40-folds as compared to controls (Pb only) depending on the type of chelator used. Shoot accumulations of Pb varied from 0.1 to 0.42% (dry weight) depending on the concentration of chelators used.  相似文献   

3.
We have presented changes in the photosynthetic apparatus activity of Arabidopsis thaliana plants occurring within 15-144 h of 100 microM Cu or Cd action with regard to jasmonate (JA) as well as expression of the oxidative stress and non-enzymic defense mechanisms. The inhibitory effect of both heavy metals related to developing dissipative processes and lipid peroxide formation was expressed in dark-adapted state after the longest time as a decrease in potential quantum yield of PSII. In dark- and light-adapted state the heavy metals affected the enzymic phase of photosynthesis already from the 15th hour, which was related to the lipid peroxide formation. Photochemical quenching decrease was induced after 48th hour and did not show a close correlation with the JA pathway. Blockade of endogenously formed JA by propyl gallate decreased the effect of Cu and Cd on both the whole photosynthetic apparatus starting from the 48th hour and on the primary photochemistry of PSII after 144 h. In the case of Cu the effect was related to a lipid peroxidation decrease and to an increase in glutathione and phytochelatin (PC) levels, but in the case of Cd to lipid peroxidation, O.2- and especially to PCs increase. The obtained results indicated that JA after the longest time might enhance the sensitivity of A. thaliana to Cu and Cd stress. Asc enhanced toxic action of Cu and Cd after 15 h, but after a longer time it diminished the influence of Cd (but not Cu) on photosynthetic activity.  相似文献   

4.
This study focused on the cadmium (Cd) tolerance of mangroves with application of phosphate (P) in order to explore whether exogenous P can alleviate Cd stress on these intertidal species. Kandelia obovata (S. L.) seedlings were cultivated in rhizoboxes under different levels of Cd and P concentrations. The speciation distributions of Cd in the rhizosphere and non-rhizosphere sediments were examined by sequential extraction procedures; organic acid in plant tissues and soil solution was measured by high-performance liquid chromatography; Cd and P accumulation in the plants was also determined. Results showed that considerable differences existed in Cd speciation distributions between rhizosphere and non-rhizosphere sediments. Root activity influenced the dynamics of Cd, P application increased the organic acid content in root tissues, P also increased Cd accumulation in roots whilst lowering Cd translocation from root to the above-ground tissues, and a significant positive correlation was found between Cd and P in roots (r?=?0.905). It is postulated that Cd detoxification of K. obovata (S. L.) is associated with higher Cd immobilization in the presence of higher P and organic acid contents in root tissue.  相似文献   

5.
Some plants have high ability to absorb heavy metals in high concentrations. In this study, Halimione portulacoides was tested in conjunction with citric acid, in order to evaluate the possible use of this plant in phytoremediation processes in salt marshes. Two different concentrations of chelator were used combined with two heavy metal concentrations. When 25microM of citric acid was applied, Cd uptake and translocation was enhanced while for Ni these processes were almost inhibited. Increasing citric acid concentration to 50microM, Ni absorption decreased by the roots while for Cd there was still an increase in root uptake. Analysing translocation with this concentration of chelator, a decreased metal content in the upper organs for both metals was observed. While for Cd an optimal concentration of 25microM of citric acid was observed for phytoremediative processes, for nickel neither concentrations of chelator showed advantages for application in this remediative method.  相似文献   

6.
巯基化合物在万寿菊镉解毒中的作用   总被引:2,自引:0,他引:2  
采用水培实验方法研究了万寿菊体内镉积累和解毒与巯基化合物含量的关系。万寿菊植株分别在镉浓度为0、0.1、0.5、2和8 mg/L的营养液中暴露7 d,测定了根、茎、叶中镉、非蛋白巯基(NPT)、半胱氨酸(Cys)、γ-谷氨酰半胱氨酸(γ-EC)、谷胱甘肽(GSH)和植物络合素(PCs)的含量。植物根、茎、叶中镉含量都随着镉暴露浓度的增加而增加。当溶液中镉浓度较低(0.1~2 mg/L)时,茎叶中NPT、PCs、Cys和γ-EC含量随着镉浓度增加而增大;当镉浓度较高(8 mg/L)时,茎叶中PCs含量迅速降低,GSH含量大幅度增高。在根部,这些巯基化合物的含量几乎不受镉处理影响,且含量较低。以上研究结果表明:PCs在万寿菊镉的解毒机制中发挥一定的作用,暴露于高浓度的镉,GSH比PCs起着更为重要的解毒作用。  相似文献   

7.
The possibility to clean heavy metal contaminated soils with hyperaccumulator plants has shown great potential. One of the most recently studied species used in phytoremediation applications are sunflowers. In this study, two cultivars of Helianthus annuus were used in conjunction with ethylene diamine tetracetic acid (EDTA) and citric acid (CA) as chelators. Two different concentrations of the chelators were studied for enhancing the uptake and translocation of Cd, Cr, and Ni from a silty-clay loam soil. When 1.0 g/kg CA was used, the highest total metal uptake was only 0.65 mg. Increasing the CA concentration posed a severe phytotoxicity to both cultivars as evidenced by stunted growth and diminished uptake rates. Decreasing the CA concentration to 0.1 and 0.3 g/kg yielded results that were not statistically different from the control. EDTA at a concentration of 0.1 g/kg yielded the best results for both cultivars achieving a total metal uptake of approximately 0.73 mg compared to approximately 0.40 mg when EDTA was present at 0.3 g/kg.  相似文献   

8.
The uptake and distribution of cadmium in tomato plants (Lycopersicon esculentum, Mill, cv. Tiny Tim) were examined with and without the presence of ethylenediaminetetraacetic acid (EDTA) as chelating agent and 2,4-dinitrophenol (DNP) as metabolic inhibitor. Eight-week-old intact and derooted tomato seedlings were used in hydroculture experiments with cadmium applied as (115)Cd(NO(3))(2) in a range of concentrations. Measurements of the (115)Cd content of roots, stems and leaves were carried out by gamma-ray spectroscopy. The data showed that applications of both EDTA and DNP resulted in reduced total Cd accumulation in the plants, but relatively enhanced Cd transport into the above-ground plant parts. The Cd mobility in the transport channels in the shoots was increased by EDTA in both intact and derooted plants. Application of DNP leads to increased relative Cd import to leaves in derooted plants, but a reduced import into leaves of intact plants. These results suggest that Cd-complexes are formed in root cells before root-to-shoot transport. Furthermore, initial Cd uptake may be associated with adsorption on the negative charges of the cell walls of the root system. The high Cd mobility in shoots, in experiments with intact plants and Cd-EDTA application, indicates the possibility of simultaneous uptake of Cd and EDTA, possibly as a Cd-EDTA complex.  相似文献   

9.
Singh S  Eapen S  D'Souza SF 《Chemosphere》2006,62(2):233-246
Bacopa monnieri L. plants exposed to 10, 50, 100 and 200 microM cadmium (Cd) for 48, 96 and 144 h were analysed with reference to the accumulation of metal and its influence on various enzymatic and non-enzymatic antioxidants, thiobarbituric acid reactive substances (TBARS), photosynthetic pigments and protein content. The accumulation of Cd was found to be increased in a concentration and duration dependent manner with more Cd being accumulated in the root. TBARS content of the treated roots and leaves increased with increase in Cd concentration and exposure periods, indicating the occurrence of oxidative stress. Induction in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and guiacol peroxidase (GPX) was recorded in metal treated roots and leaves of B. monnieri. In contrast, a significant reduction in catalase activity in Cd treated B. monnieri was observed. An increase was also noted in the levels of cysteine and non-protein thiol contents of the roots of B. monnieri followed by a decline. However, in leaves, cysteine and non-protein thiol contents were found to be enhanced at all the Cd concentrations and exposure periods. A significant reduction in the level of ascorbic acid was observed in a concentration and duration dependent manner. The total chlorophyll and protein content of B. monnieri decreased with increase in Cd concentration at all the exposure periods. Results suggest that toxic concentrations of Cd caused oxidative damage as evidenced by increased lipid peroxidation and decreased chlorophyll and protein contents. However, B. monnieri is able to combat metal induced oxidative injury involving a mechanism of activation of various enzymatic and non-enzymatic antioxidants.  相似文献   

10.
Plants grown in contaminated areas may accumulate trace metals to a toxic level via their roots and/or leaves. In the present study, we investigated the distribution and sources of Pb and Cd in maize plants (Zea mays L.) grown in a typical zinc smelting impacted area of southwestern China. Results showed that the smelting activities caused significantly elevated concentrations of Pb and Cd in the surrounding soils and maize plants. Pb isotope data revealed that the foliar uptake of atmospheric Pb was the dominant pathway for Pb to the leaf and grain tissues of maize, while Pb in the stalk and root tissues was mainly derived from root uptake. The ratio of Pb to Cd concentrations in the plants indicated that Cd had a different behavior from Pb, with most Cd in the maize plants coming from the soil via root uptake.  相似文献   

11.
Wu LH  Luo YM  Christie P  Wong MH 《Chemosphere》2003,50(6):819-822
A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.  相似文献   

12.
Chen YX  Lin Q  Luo YM  He YF  Zhen SJ  Yu YL  Tian GM  Wong MH 《Chemosphere》2003,50(6):807-811
Adsorption and hydroponics experiments were conducted to study the role of citric acid on the phytoremediation of heavy metal contaminated soil. The results show that addition of citric acid decreased the adsorption of both lead and cadmium, such an effect was bigger for cadmium than for lead. The decrease in the adsorption of Pb and Cd was mainly due to a decrease of pH in the presence of citric acid. The presence of citric acid could alleviate the toxicity of Pb and Cd to radish, and stimulate their transportation from root to shoot. The studies of heavy metal forms using sequential extraction demonstrated that lead was mainly existed as FHAC (a lower bioavailable form) in the root, while F(HCl) was the dominant form in the leaf. The addition of citric acid to the soil changed the concentration and relative abundance of all the forms. The detoxifying effect of citric acid to Pb in shoots might result from the transformation of higher toxic forms into lower toxic forms. Cadmium was mainly present as F(NaCl), therefore, it had higher toxicity than lead. The addition of citric acid increased the abundance of F(H2O) + F(NaCl), indicating that citric acid treatment could transform cadmium into more transportable forms.  相似文献   

13.
Li CW  Cheng CH  Choo KH  Yen WS 《Chemosphere》2008,72(4):630-635
This study focused on the effects of pH and organic ligands, namely ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and citric acids, on the removal and recovery of Cd(II) in polyelectrolyte enhanced ultrafiltration (PEUF). Polyethylenimine (PEI), which can bind with both positively charged metal ions by coordination bonding and negatively charged ligand-metal complexes by charge attraction, was employed as a chelating polymer. The removal and recovery of Cd species was greatly dependent on the chemistry of organic ligands according to solution pH, particularly being related to the distribution of Cd-ligand complexes at different pH levels. In the presence of EDTA, the dominant Cd species are negatively charged Cd(EDTA)(2-) and CdH(EDTA)(-) over the range of pH levels investigated, interacting with PEI via electrostatic attraction and being less pH dependent. On the other hand, the pH effects of both NTA and citric acid systems are similar to that for the system without organic ligands. This was associated with the fact that free Cd ions were predominant at the acidic pH range in both NTA and citric acid systems.  相似文献   

14.
The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg(-1) soil) and Cd (0, 10 and 25 mg kg(-1) soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids.  相似文献   

15.
Irtelli B  Navari-Izzo F 《Chemosphere》2006,65(8):1348-1354
Brassica juncea cv. 426308 was grown in soils containing 150 mg Cd(2+)kg(-1) soil. After 38 days, the soil was amended with two rates of citric acid or NTA (10 and 20 mmol kg(-1) soil). Control soil was not amended with chelates. Plants were harvested during growth, immediately before and seven days after chelate addition. Shoot composition of organic and phenolic acids and shoot Cd(2+) concentration were determined. Cadmium concentration remained constant during the growth and increased following NTA and citric acid amendments depending on chelate type and concentration. The highest increments in Cd(2+) were measured after the addition of NTA. Compared to the control, 10 and 20 NTA-treated plants showed two- and three-fold increases, respectively. At 150 mg Cd(2+)kg(-1) soil the amount of organic and phenolic acids in the leaves of B. juncea was always higher than that detected in the control. A direct correlation between organic acid concentration and cadmium content was detected both during growth and after chelate addition. On the contrary, the amount of phenols seemed to be correlated with the metal content only in non-amended and NTA-treated plants. The 10 and 20 citric acid additions caused 45% and 90% increases in shoot phenolic acids although cadmium content rose to a smaller extent. The inhibition of citrate synthase and the entrance of phosphoenolpyruvate in shikimate pathway leading to the formation of aromatic compounds might come into play. The increase in phenylalanine ammonialyase activity following citric acid amendments suggested this metabolic response.  相似文献   

16.

The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl2, FeCl3, citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl3, Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  相似文献   

17.
A pot experiment was conducted to investigate the influence of EDTA on the extractability of Cd in the soil and uptake of Cd by Indian mustard (Brassica juncea). Twenty levels of soil Cd concentration ranging from 10 to 200 mg kg(-1) were produced by spiking aliquots of a clay loam paddy soil with Cd(NO3)2. One week before the plants were harvested EDTA was applied to pots in which the soil had been spiked with 20, 40, 60...200 mg Cd kg(-1). The EDTA was added at the rate calculated to complex with all of the Cd added at the 200 mg kg(-1) level. Control pots spiked with 10, 30, 50... 190 mg Cd kg(-1) received no EDTA. The plants were harvested after 42 days' growth. Soil water- and NH4NO3-extractable Cd fractions increased rapidly following EDTA application. Root Cd concentrations decreased after EDTA application, but shoot concentrations increased when the soil Cd levels were >130 mg kg(-1) and Cd toxicity symptoms were observed. The increases in soil solution Cd induced by EDTA did not increase plant total Cd uptake but appeared to stimulate the translocation of the metal from roots to shoots when the plants appeared to be under Cd toxicity stress. The results are discussed in relation to the possible mechanisms by which EDTA may change the solubility and bioavailability of Cd in the soil and the potential for plant uptake and environmental risk due to leaching losses to groundwater.  相似文献   

18.
Lei W  Wang L  Liu D  Xu T  Luo J 《Chemosphere》2011,84(5):689-694
Cadmium (Cd) is a highly toxic element in water. Its toxicity has been attributed to oxidative stress mediated by free radicals. Here we investigated the effects of Cd on the histopathology, antioxidant enzymes and lipid peroxidation of crustacean heart. The freshwater crabs Sinopotamon yangtsekiense were exposed to different concentrations of Cd for 1, 3, 5 and 7 d. After exposure, histological abnormalities were discovered, including myocardial edema, vacuolar and vitreous degeneration, and infiltration of inflammatory cells. Additionally, alterations in nuclei, mitochondria, rough endoplasmic reticulum as well as myofibrils were observed. Meanwhile, superoxide dismutase (SOD) activity was significantly increased after Cd exposure. Catalase (CAT) activity was only increased in the group exposed to 14.50 mg L−1 Cd on day 5 and decreased with increasing Cd concentration and exposure time. Glutathione peroxidase (GPx) activity was increased in groups treated with 29.00, 58.00 and 116.00 mg L−1 on days 1 and 3, and decreased thereafter. Besides, malondialdehyde (MDA) levels were significantly increased after 3 d of Cd exposure at all the indicated concentrations. These results showed that acute Cd exposure led to harmful effects on the histology of crab heart, which are most likely linked to Cd-induced oxidative stress.  相似文献   

19.
Chelator induced phytoextraction and in situ soil washing of Cu   总被引:9,自引:0,他引:9  
In a soil column experiment, we investigated the effect of 5 mmol kg(-1) soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg(-1) Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8 +/-1.3 mg kg(-1) Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg(-1) exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53 +/- 0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates.  相似文献   

20.
The contribution of arbuscular mycorrhiza (AM) to immobilisation of Cd in substrate was studied in two experiments. In the first experiment, substrates prepared by cultivating tobacco, either non-mycorrhizal or inoculated with the AM fungus Glomus intraradices were enriched with a range of Cd concentrations, and Cd toxicity in the substrates was assessed using root growth tests with lettuce as a test plant. The tests revealed lower Cd toxicity in the mycorrhizal than in the non-mycorrhizal substrate, and the difference increased with increasing total Cd concentration in the substrates. In the second experiment, extraradical mycelium (ERM) of G. intraradices exposed in vivo to Cd was collected and analysed on Cd concentration. The ERM accumulated 10–20 times more Cd per unit of biomass than tobacco roots. While Cd concentrations were lower in the biomass of mycorrhizal plants than of non-mycorrhizal plants, Cd immobilisation by ERM did not affect the total Cd content in mycorrhizal tobacco.

It is concluded that mycorrhiza may decrease Cd toxicity to plants by enhancing Cd immobilisation in soil. The results therefore suggest a potential role of AM symbiosis in the phytostabilisation of contaminated soils, where high Cd availability inhibits plant growth.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号