首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用2017年嘉善善西超级站臭氧(O3)及其前体物(NOx和VOCs)以及气象因子(温度、湿度、风速)逐小时数据,分析了2017年全年NOx和O3的变化特征以及春季(4—5月)、夏季(7—8月)NOx和气象因子对O3生成的影响,利用O3生成潜势(OFP)评估了VOCs大气化学反应活性,并通过潜在源区贡献(PSCF)和浓度权重轨迹(CWT)方法分析了嘉善春、夏季O3潜在源区贡献特征。研究发现:O3日变化特征为单峰结构,NOx为弱双峰结构。O3浓度在3—9月较高,春、夏季O3浓度峰值分别出现在15:00和14:00,春、夏季的NOx、O3日变化与2017年全年日变化趋势基本一致。NOx对O3存在滴定作用,且低湿高温有利于O3浓度的升高。春、夏季O3生成潜势贡献均表现为烯烃 > 芳香烃 > 烷烃,由于烯烃光化学活性较高,夏季烯烃浓度升高导致其贡献较春季增长约18.1个百分点,且夏季VOCs平均最大O3增量反应活性高于春季。PSCF和CWT分析结果表明,嘉善春季的潜在源区主要为本地、西南方向和东南方向,夏季的潜在源区主要为本地、西北方向、西南方向以及东南方向。  相似文献   

2.
通过区域空气质量模型CAMx对大连市2015年8月近地面臭氧(O_3)污染进行模拟,探讨了O_3及其生成前体物(NOx和VOCs)的来源,O_3生成控制区,并根据敏感性分析结果对前体物排放的控制效果进行了定量评估。结果表明:本地NOx排放对大连地区的NOx浓度贡献占90%以上,本地VOCs排放对大连地区的VOCs浓度贡献占80%以上,而本地NOx和VOCs排放对大连地区O_3浓度贡献仅占29%;大连市整体上为VOCs控制区,控制VOCs能有效降低O_3污染,还能有效削减O_3的峰值浓度;通过敏感性分析结果计算得出,削减大连本地工业源VOCs和民用源VOCs能够有效降低大连地区O_3浓度,削减10%的工业源VOCs能使市区O_3平均浓度降低2%左右,削减10%的民用源VOCs能使大连市区平均O_3浓度降低1%左右。建议NOx与VOCs削减比例为1∶2,对大连市O_3和PM2.5污染进行协同控制。  相似文献   

3.
The objective of this study is to analyze the concentrations of SO2, NO2, and O3 measured by a Differential Optical Absorption Spectroscopy (DOAS) system that was operating at the campus of Technological Education Institute of Piraeus during 2008 and 2009 warm periods (July to September) in relation to the prevailing meteorological conditions. The DOAS system was operating in a particularly polluted area of the West part of Attica basin on a continuous basis, measuring the concentration levels of the main pollutants (O3, NO2, and SO2) as well as aromatic hydrocarbon substances (benzene, toluene, and xylene). According to the analysis, the SO2 concentration levels at this measuring site are rather high and this may be attributed to the characteristics of this measuring site. Proximity of roadways and local circulation are just some of the factors that can affect the concentration levels of monitoring of pollutant concentrations such as NO2 and surface ozone. The results provide evidence for the occurrence of an atmospheric phenomenon that produces higher ozone concentrations during weekends despite lower concentrations of ozone precursors. This phenomenon is known as the weekend effect.  相似文献   

4.
2013—2015年,天津市臭氧(O_3)浓度整体呈下降趋势,污染状况略低于京津冀区域的其他城市。O_3浓度春、夏季高,冬季低,高值主要集中在5—9月,浓度从早上06:00开始升高,至中午14:00达到峰值。污染主要集中在中心城区、西部和北部地区,东部、南部和西南部地区污染相对较轻。O_3浓度在温度303 K以上、相对湿度70%以下或西南风为主导时较高。VOCs/NOx比值低于8,O_3的生成处于VOCs控制区。芳香烃类和烯烃类对天津市O_3生成贡献最大,其中,乙烯和甲苯为O_3生成潜势贡献最大的物种,其次为间/对二甲苯、丙烯、邻二甲苯、异戊二烯、反-2-丁烯、乙苯等,通过控制汽车尾气、化工行业及溶剂使用等对O_3生成潜势贡献大的VOCs排放源可有效控制天津市O_3污染。  相似文献   

5.
Air pollutant concentrations from a monitoring campaign in Buenos Aires City, Argentina, are used to investigate the relationships between ambient levels of ozone (O3), nitric oxide (NO) and nitrogen dioxide (NO2) as a function of NO x (=NO + NO2). This campaign undertaken by the electricity sector was aimed at elucidating the apportionment of thermal power plants to air quality deterioration. Concentrations of carbon monoxide (CO) and sulphur dioxide (SO2) were also registered. Photo stationary state (PSS) of the NO, NO2, O3 and peroxy radicals species has been analysed. The ‘oxidant’ level concept has been introduced, OX (=O3 + NO2), which varies with the level of NO x . It is shown that this level is made up of NO x -independent and NO x -dependent contributions. The former is a regional contribution that equates the background O3 level, whereas the latter is a local contribution that correlates with the level of primary pollution. Furthermore, the anticorrelation between NO2 and O3 levels, which is a characteristic of the atmospheric photo stationary cycle has been verified.The analysis of the concentration of the primary pollutants CO and NO strongly suggests that the vehicle traffic is the principal source of them. Levels of continuous measurements of SO2 for Buenos Aires City are reported in this work as a complement of previously published results.  相似文献   

6.
A multivariate time series approach vector autoregression (VAR) along with impulse response function and variance decomposition technique has been employed to look into the interrelationship among O3, NO, NO2, and volatile organic compounds (VOCs, namely, benzene, ethylbenzene, toluene, and xylene in the present study) using 3 months long continuous time series data of 1 h average concentration of these pollutants at one of the traffic sites in Delhi, India. It is found that the VAR of order 2 (i.e., past two lagged values of 1 h interval) is sufficient to represent the observed time series at the station studied. The impulse response function and variance decomposition analysis indicate that O3 concentration shows an immediate rise and persists for a longer duration (typically 8–10 h) once the impulse of NO2, benzene, ethylbenzene, or xylene is given in the ambient environment. However, in case of toluene, the reverse effect has been observed. Since O3 forms in the troposphere due to photolysis of NO2, it is not surprising that its impulse triggers O3 formation in the ambient environment. However, in case of VOCs, this has been attributed to their tendency to show higher inclination toward intermediary reactions leading to the formation of O3 rather than their (VOCs) reaction with O3. Among VOCs, only toluene has been observed to show higher inclination toward its reaction with O3. Apart from this, variance decomposition technique also reveals that the relation of NO with NO2 is more important than the relation of NO with O3 creating a conducive atmosphere for O3 formation in the present scenario. Thus, the multivariate time series approach provides significant insight about the role played by the dominant individual VOCs and NO x in influencing the O3 concentration in ambient urban atmosphere whereas a photochemical modeling approach gives an overall view of NO x and VOCs behavior with respect to O3 by using the O3 isopleth technique.  相似文献   

7.
The evolution of NOx from grass and maize silages wasmeasured using chemiluminescence in samples kept in airtightcontainers, in the silos and in a 750 kg mass removed to a mixer waggon. Measurements were made on the grass and maizesilos in two consecutive years. The results show that thereis continuous evolution of NOx after silos have been opened and that high concentrations persist in the mass whichare rapidly released on agitation at the feed-out. The maximumrecorded concentrations of NO and NO2 were 1985 and 152 ppbv respectively. These values are orders of magnitude greaterthan for rural background levels and exceed the maximum hourlyexposure of 50 ppbv for NO2 recommended by the UK expertpanel for quality standards.  相似文献   

8.
中国城市臭氧的形成机理及污染影响因素研究进展   总被引:1,自引:0,他引:1  
中国城市臭氧(O_3)污染问题日趋严重。O_3主要来源于汽车尾气及工业排放氮氧化合物(NO_x)和挥发性有机物(VOCs)光化学反应生成,少部分来自于平流层的向下传输。文章介绍了城市O3形成机理研究情况,概述了中国城市臭氧污染浓度特征及气象因子、气候变化、前体物等影响因素研究进展情况,并对未来研究方向进行了展望。  相似文献   

9.
南京市臭氧、VOCs和PANs污染特征及变化趋势   总被引:1,自引:0,他引:1  
对2013—2016年基于国家环境空气质量监测站以及省建大气多参数站所获取的南京市O_3、NO_2、CO、VOCs、PANs观测结果进行综合评价,结果表明:2016年南京市O_3第90百分位日最大8 h平均质量浓度比2013年上升33.3%,超标天数中O_3引起的超标占比增至32.0%。南京市区大气中非甲烷总烃冬季浓度高于夏季,含氧挥发性有机物则与之相反;在5—9月,含氧挥发性有机物组分在日变化过程中出现峰值的时间先后顺序依次为醚、醛、酮类,且O_3和过氧乙酰硝酸酯(PANs)生成存在有一定的线性关系。VOCs/NOx比值表明南京市处于VOCs控制区,因此对NO_2浓度下降不敏感,植物源挥发性有机物连续3年上升,夏季大气光化学反应活性未显著下降,这些现象是城市O_3浓度维持在较高水平的重要因素。  相似文献   

10.
In the present study, we investigate the variation of NO x (NO + NO2) and O3 concentrations and the relation between the extreme events (episodes) of NO x and O3 concentrations and the relevant meteorological conditions in the urban atmosphere of the Athens basin. Hourly data of NO, NO2 and O3 concentrations from 10 representative monitoring sites located in the Athens basin were used, covering the 10-year time period from 1994 to 2003. The results of our analysis show that the concentrations of air pollutants differ significantly from one monitoring site to another, due to the location and proximity of each station to the emission sources. For each site, there are also significant differences in NO x and O3 concentrations from day to day, as well as from month to month and/or from season to season. The annual and seasonal variations show higher NO values in winter and lower in summer. On the contrary, NO2 and O3 values are higher in summer (photochemical production of O3) and lower in winter. These differences are attributed, to a large extent, to the prevailing synoptic and meteorological conditions, the most important between them being the wind direction and speed as well as the atmospheric pressure. Our analysis of the identified 179 extreme NO x air pollution events shows that most of them took place under anticyclonic conditions, associated with calm or weak winds (speed <2.5 ms−1) of mostly southern to southwestern directions, as well as with low air temperatures and intense stable surface atmospheric conditions. There exists a significant decreasing tendency in NO x air pollution episodic events over the 10-year study period, resulting in very few to none events in the period from 2000 to 2003. As far as it concerns the extreme O3 concentrations, 34 air pollution events were identified, occurring under high air temperatures, variable weak winds and intense solar irradiation. The trends of O3 concentrations are stronger in suburban sites than in urban ones.  相似文献   

11.
A study was begun in the winter of 2000–2001 and continued through the winter of 2001–2002 to examine air quality at the Green Rock snowmobile staging area at 2,985 m elevation in the Snowy Range of Wyoming. The study was designed to evaluate the effects of winter recreation snowmobile activity on air quality at this high elevation site by measuring levels of nitrogen oxides (NO x , NO), carbon monoxide (CO), ozone (O3) and particulate matter (PM10 mass). Snowmobile numbers were higher weekends than weekdays, but numbers were difficult to quantify with an infrared sensor. Nitrogen oxides and carbon monoxide were significantly higher weekends than weekdays. Ozone and particulate matter were not significantly different during the weekend compared to weekdays. Air quality data during the summer was also compared to the winter data. Carbon monoxide levels at the site were significantly higher during the winter than during the summer. Nitrogen oxides and particulates were significantly higher during the summer compared to winter. Nevertheless, air pollutants were well dispersed and diluted by strong winds common at the site, and it appears that snowmobile emissions did not have a significant impact on air quality at this high elevation ecosystem. Pollutant concentrations were generally low both winter and summer. In a separate study, water chemistry and snow density were measured from snow samples collected on and adjacent to a snowmobile trail. Snow on the trail was significantly denser and significantly more acidic with significantly higher concentrations of sodium, ammonium, calcium, magnesium, fluoride, and sulfate than in snow off the trail. Snowmobile activity had no effect on nitrate levels in snow.  相似文献   

12.
The current paper investigates the possibility of establishing an empirically based model for predicting the emission rate of nitrogen oxides (NO x ) from oil refinery furnaces, in order to continually track emissions with respect to environmental licence limits. Model input data were collected by direct stack monitoring using an electrochemical cell NO x analyser, as well as a range of telemetry sensors to obtain refinery process parameters. Principal Component Analysis (PCA), in conjunction with Partial Least Squares (PLS) regression was then used to build a series of models able to predict NO x emissions from the furnaces. The models produced were proven to be robust, with a relatively high accuracy, and are able to predict NO x levels over the range of operating conditions which were sampled. It was found that due to structural/operational variations a separate model is usually required for each furnace. The models can be integrated with the refinery operating system to predict NO x emission rates on a continuous basis. Two models representing structurally different furnaces are considered in this paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The NO, NO2 and N2O emission was measured, upon application of nitrate, ammonium and both, to four Belgian soils with different characteristics. The addition of NH 4 + caused higher NO and N2O emissions than the addition of no nitrogen, or the addition of NO 3 . In contrast to the two soils with a pH of approximately 8 the two soils with a pH around 6 showed a considerable delay in production of both NO and N2O upon the application of the ammonium, probably due to the lag-period of nitrification. The soils with a pH of 8 gave higher emissions on the application of NH 4 + than the soils with a pH of 6. The emission of NO2 was found to be considerably lower than the NO emission from the soils. The NO/NO2 ratio varied between 5–25 at considerable NO emissions (>50 nmol kg–1). In the controls of soil 1 and soil 2, which showed very low NO emissions ratios of <1 were observed. The N2O/NO ratios varied between 5–20 when NO emissions were considerable (>50 nmol kg–1). Soil 3 and 4 gave lower N2O/NO ratios than soil 1 and 2. In the controls of soil 1 and soil 2, at low NO emissions, N2O/NO ratios of >300 were observed. Soil 3 and 4 gave higher NO/NO2 and lower N2O/NO ratios than soil 1 and 2.  相似文献   

14.
以沈阳2013—2015年臭氧(O_3)监测数据为基础,从地域差异及时间变化上分析了沈阳O_3浓度变化特征。结果表明:沈阳城市外围O_3浓度高于城市中心;O_3浓度变化具有明显季节特征,夏季O_3浓度最高,冬季最低;O_3浓度日变化呈单峰分布,谷值出现在06:00,峰值出现在14:00;O_3浓度出现明显"周末效应",周末白天O_3浓度高于工作日O_3浓度,夜间差异不大。  相似文献   

15.
Ozone, NO2, SO2, CO, PM10 and meteorological parameters were measured simultaneously during the summer?Cautumn season 2007 in Osijek??the eastern, flat, agricultural part of Croatia. Fourier analysis confirms the existence of variation in ozone volume fractions with periods ranging from the usual semi-daily and daily to 7 and 28 daily cycles. The relationships between O3 and other variables were modelled in three ways: principal component analysis, multiple linear regression and principal component regression. The results of the principal component analysis detected underlying relationships among ozone concentrations and meteorological variables. An extremely simple meteorological model is suitable for the prediction of ozone levels. The meteorological factors, temperature and cloudiness played a main role in the MLR model (R 2?=?0.83). The application of the principal component regression approach confirmed that the original variables associated with the valid principal components were meteorological variables (R 2?=?0.82).  相似文献   

16.
The oxides of nitrogen—NO x (NO and NO2)—are an important constituent of the troposphere. The availability of relatively higher spatial (0.25° grid) and temporal (daily) resolution data from ozone monitoring instrument (OMI) onboard Aura helps us to better differentiate between the point sources such as thermal power plants from large cities and rural areas compared to previous sensors. The annual and seasonal (summer and winter) distributions shows very high mean tropospheric NO2 in specific pockets over India especially over the Indo-Gangetic plains (up to 14.2 × 1015 molecules/cm2). These pockets correspond with the known locations of major thermal power plants. The tropospheric NO2 over India show a large seasonal variability that is also observed in the ground NO2 data. The multiple regression analysis show that the influence of a unit of power plant (in gigawatts) over tropospheric NO2 (×1015 molecules/cm2) is around ten times compared to a unit of population (in millions) over India. The OMI data show that the NO2 increases by 0.794 ± 0.12 (×1015 molecules/cm2; annual) per GW compared to a previous estimate of 0.014 (×1015 molecules/cm2) over India. The increase of tropospheric NO2 per gigawatt is found to be 1.088 ± 0.18, 0.898 ± 0.14, and 0.395 ± 0.13 (×1015 molecules/cm2) during winter, summer, and monsoon seasons, respectively. The strong seasonal variation is attributed to the enhancement or suppression of NO2 due to various controlling factors which is discussed here. The recent increasing trend (2005–2007) over rural thermal power plants pockets like Agori and Korba is due to recent large capacity additions in these regions.  相似文献   

17.
Diwali is one of the largest festivals for Hindu religion which falls in the period October–November every year. During the festival days, extensive burning of firecrackers takes place, especially in the evening hours, constituting a significant source of aerosols, black carbon (BC), organics, and trace gases. The widespread use of sparklers was found to be associated with short-term air quality degradation events. The present study focuses on the influence of Diwali fireworks emissions on surface ozone (O3), nitrogen oxides (NO x ), and BC aerosol concentration over the tropical urban region of Hyderabad, India during three consecutive years (2009–2011). The trace gases are analyzed for pre-Diwali, Diwali, and post-Diwali days in order to reveal the festivity’s contribution to the ambient air quality over the city. A twofold to threefold increase is observed in O3, NO x , and BC concentrations during the festival period compared to control days for 2009–2011, which is mainly attributed to firecrackers burning. The high correlation coefficient (~0.74) between NO x and SO2 concentrations and higher SO2/NO x (S/N) index suggested air quality degradation due to firecrackers burning. Furthermore, the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation-derived aerosol subtyping map also confirmed the presence of smoke aerosols emitted from firecrackers burning over the region. Nevertheless, the concentration level of pollutants exhibited substantial decline over the region during the years 2010 and 2011 compared to 2009 ascribed to various awareness campaigns and increased cost of firecrackers.  相似文献   

18.
上海市臭氧污染时空分布及影响因素   总被引:1,自引:0,他引:1  
分析2006—2016年上海市的监测数据发现,臭氧(O_3)浓度存在逐年上升趋势,污染持续时间有所增加,但除水平风速有下降趋势外,其他相关气象因素的年际变化趋势并不显著。空间分析结果表明,上海市O_3超标主要集中在西南部郊区,但市区O_3超标潜势不容忽视。O_3污染高发季节的污染玫瑰图分析发现,上海市南部地区是影响上海市O_3污染的关键区域;对于NO_2减排的影响分析发现,尽管上海市O_3平均浓度总体处于上升趋势,但在NO_2下降幅度最为明显的内环市区和北部郊区,O_3上升幅度低于NO_2下降幅度较小的内外环区域和西部郊区,表明上海市的O_3污染控制仍需持续推进NOx的减排,并同步推进VOCs的减排。  相似文献   

19.
The concentrations of ozone, NO2 and SO2, measured with a DOAS system 70 m above ground level in the city of Graz were compared with data from conventional ground stations. The dependence of vertical trace-gas distributions on stability categories and time of the day or year was investigated. Concerning the maximum ozone concentrations in summer, the DOAS data are representative for the ground-level situation. In average, the concentrations 70 m above ground are more than twice the ground-level concentrations. It has been shown that beside the reaction with NO, dry deposition is an important sink for ozone near the surface. The DOAS NO2-concentrations are representative for ground-level conditions in summer, except for the morning maximum of NO2. In winter the DOAS NO2-concentrations amount for 73% of the ground level values in average. Concerning the slow reacting trace gas SO2, the DOAS data are always representative for the ground-level conditions.  相似文献   

20.
Hourly concentrations of ozone (O(3)), 55 volatile organic compounds (VOCs, ozone precursors) and nitrogen oxides (NOx) were measured at an upwind urban site, a downwind suburban site, and a rural site in central Taiwan, from January 2003 to December 2006. VOC and NOx mean concentrations showed a gradient from high to low across the urban (56 ppb and 34 ppb), suburban (38 ppb and 27 ppb) and rural sites (25 ppb and 21 ppb) but a reverse gradient in ozone across these sites (24, 27, and 29 ppb, respectively). Although there was about twice the difference in VOC concentrations between the urban and rural sites, nearly 65% ozone formation potential was contributed to by the same 9 VOCs. Seasonal patterns showed peak ozone levels in autumn and minima in summer at the urban site, but minima in winter at the downwind suburban and rural sites. Ozone precursor levels, on the other hand, were lowest in summer and highest in winter. The diurnal pattern showed that ozone levels peaked one hour later at the rural site than at the urban site. The ethylbenzene to m,p-xylene ratio, an indicator of the age of the air mass, increased from 0.4 at the urban site to 0.6 at the suburban site and 0.8 at the rural site during daily peak ozone times. This finding suggests the transport of ozone and precursors from upwind to downwind producing elevated ozone levels in the suburban and rural areas. Ozone episodes occurred mostly in days with a mean midday UV index of 6.5 (1 UV index=100 J m(-2)) and wind speed at 1.3 m s(-1) at all three sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号