首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
废物处理   1篇
污染及防治   10篇
评价与监测   2篇
社会与环境   1篇
  2013年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1994年   1篇
  1988年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 that (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant detoxification and repair. In this paper, we discuss the linkage of the temporal variability of apoplastic ascorbate with the diurnal variability of defense mechanisms in plants and compare this variability with daily maximum O3 concentration and diurnal uptake and entry of O3 into the plant through stomata. We describe the quantitative evidence on temporal variability in concentration and uptake and find that the time incidence for maximum defense does not necessarily match diurnal patterns for maximum O3 concentration or maximum uptake. We suggest that the observed out-of-phase association of the diurnal patterns for the above three processes produces a nonlinear relationship that results in a greater response from the higher hourly average O3 concentrations than from the lower or mid-level values. The fact that these out-of-phase processes affect the relationship between O3 exposure/dose and vegetation effects ultimately impact the ability of flux-based indices to predict vegetation effects accurately for purposes of standard setting and critical levels. Based on the quantitative aspect of temporal variability identified in this paper, we suggest that the inclusion of a diurnal pattern for detoxification in effective flux-based models would improve the predictive characteristics of the models. While much of the current information has been obtained using high O3 exposures, future research results derived from laboratory biochemical experiments that use short but elevated O3 exposures should be combined with experimental results that use ambient-type exposures over longer periods of time. It is anticipated that improved understanding will come from future research focused on diurnal variability in plant defense mechanisms and their relationship to the diurnal variability in ambient O3 concentration and stomatal conductance. This should result in more reliable O3 exposure standards and critical levels.  相似文献   
2.
An international cooperative project on distribution of ozone in the Carpathian Mountains, Central Europe was conducted from 1997 to 1999. Results of that project indicated that in large parts of the Carpathian Mountains, concentrations of ozone were elevated and potentially phytotoxic to forest vegetation. That study led to the establishment of new long-term studies on ecological changes in forests and other ecosystems caused by air pollution in the Retezat Mountains, Southern Carpathians, Romania and in the Tatra Mountains, Western Carpathians on the Polish-Slovak border. Both of these important mountain ranges have the status of national parks and are Man & the Biosphere Reserves. In the Retezat Mountains, the primary research objective was to evaluate how air pollution may affect forest health and biodiversity. The main research objective in the Tatra Mountains was to evaluate responses of natural and managed Norway spruce forests to air pollution and other stresses. Ambient concentrations of ozone (O(3)), sulfur dioxide (SO(2)), nitrogen oxides (NO(x)) as well as forest health and biodiversity changes were monitored on densely distributed research sites. Initial monitoring of pollutants indicated low levels of O(3), SO(2), and NO(x) in the Retezat Mountains, while elevated levels of O(3) and high deposition of atmospheric sulfur (S) and nitrogen (N) have characterized the Tatra Mountains. In the Retezat Mountains, air pollution seems to have little effect on forest health; however, there was concern that over a long time, even low levels of pollution may affect biodiversity of this important ecosystem. In contrast, severe decline of Norway spruce has been observed in the Tatra Mountains. Although bark beetle seems to be the immediate cause of that decline, long-term elevated levels of atmospheric N and S depositions and elevated O(3) could predispose trees to insect attacks and other stresses. European and US scientists studied pollution deposition, soil and plant chemistry, O(3)-sensitive plant species, forest insects, and genetic changes in the Retezat and Tatra Mountains. Results of these investigations are presented in a GIS format to allow for a better understanding of the changes and the recommendations for effective management in these two areas.  相似文献   
3.
4.
Ambient ozone (O(3)) concentrations in the forested areas of the Central and Eastern European (CEE) mountains measured on passive sampler networks and in several locations equipped with active monitors are reviewed. Some areas of the Carpathian Mountains, especially in Romania and parts of Poland, as well as the Sumava and Brdy Mountains in the Czech Republic are characterized by low European background concentrations of the pollutant (summer season means approximately 30 ppb). Other parts of the Carpathians, especially the western part of the range (Slovakia, the Czech Republic and Poland), some of the Eastern (Ukraine) and Southern (Romania) Carpathians and the Jizerske Mountains have high O(3) levels with peak values >100 ppb and seasonal means approximately 50 ppb. Large portions of the CEE mountain forests experience O(3) exposures that are above levels recommended for protection of forest and natural vegetation. Continuation of monitoring efforts with a combination of active monitors and passive samplers is needed for developing risk assessment scenarios for forests and other natural areas of the CEE Region.  相似文献   
5.
Numerous ozone exposure statistics were calculated using hourly ozone data from crop yield loss experiments previously conducted for alfalfa, fresh market and processing tomatoes, cotton, and dry beans in an ambient ozone gradient near Los Angeles, California. Exposure statistics examined included peak (maximum daily hourly) and mean concentrations above specific threshold levels, and concentrations during specific time periods of the day. Peak and mean statistics weighted for ozone concentration and time period statistics weighted for hour of the day were also determined. Polynomial regression analysis was used to relate each of 163 ozone statistics to crop yield. Performance of the various statistics was rated by comparing residual mean square (RMS) values. The analyses demonstrated that no single statistic was best for all crop species. Ozone statistics with a threshold level performed well for most crops, but optimum threshold level was dependent upon crop species and varied with the particular statistics calculated. The data indicated that daily hours of exposure above a critical high-concentration threshold related well to crop yield for alfalfa, market tomatoes, and dry beans. The best statistic for cotton yield was an average of all daily peak ozone concentrations. Several different types of ozone statistics performed similarly for processing tomatoes. These analyses suggest that several ozone summary statistics should be examined in assessing the relationship of ambient ozone exposure to crop yield. Where no clear statistical preference is indicated among several statistics, those most biologically relevant should be selected.  相似文献   
6.
Data from four crop yield-loss field trials were examined to determine if analysis using an imposed phenological weighting function based on seasonal growth stage would provide a more accurate indication of impact of ozone exposure. Alfalfa (Medicago sativa L. cv. Moapa 69), dry bean (Phaseolus vulgaris L. cv. California Dark Red kidney), fresh market and processing tomato (Lycopersicon esculentum Mill. cv. 6718 VF and VF-145-B7879, respectively) were grown at 9-11 ambient field plots within southern California comprising an ambient gradient of ozone. The growing season for each crop was artificially divided into 'quarters' composed of equal numbers of whole days and roughly corresponding to specific growth stages. Ozone exposure was calculated for each of these 'quarters' and regressed against final crop yield using 163 different exposure statistics. Weighting functions were developed using reciprocal residual mean square (1/RMS) or percentage of the best 100 exposure statistics of the 163 tested (TOP100) for each of the quarters. The third quarter of the alfalfa season was clearly most responsive to ozone as measured by both of the weighting functions. Third quarter ozone was also weighted highest by both weighting functions for dry bean. Fresh market and processing tomato were each influenced the greatest by second quartero zone as demonstrated by both weighting functions. The occurrence of ozone during physiologically important events (flowering and initial fruit set in second quarter for tomato; pod development in third quarter for dry bean) appeared to influence the yield of these crops the greatest. Growth-stage-dependent phenological weighting of pollutant exposure may result in more effective predictions of levels of ozone exposure resulting in yield reductions.  相似文献   
7.
Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets and outlets in the western United States were used to evaluate (1) effects of refrigerated storage time on the chemistry of unfiltered samples, and (2) differences in sample filtration protocols. No analytes exhibited significant changes when stored less than 48 h. Six analytes (pH, sodium, ammonium, potassium, chloride, sulfate) exhibited statistically significant (but small) changes when storage time exceeded 48 h. Two analytes (calcium, nitrate) were significantly higher when samples were field filtered than when filtered in the laboratory, but the differences were also small. For waters similar to those in this test, unfiltered refrigerated samples may be stored up to 48 h without compromising sample quality. The small differences between field and lab filtration do not justify the expense, training, and contamination risk of field filtration.  相似文献   
8.
Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Guba?ówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical for this part of Europe and below the expected levels of phytotoxicity.  相似文献   
9.
Upcoming decades will experience increasing atmospheric CO2 and likely enhanced O3 exposure which represents a risk for the carbon sink strength of forests, so that the need for cause-effect related O3 risk assessment increases. Although assessment will gain in reliability on an O3 uptake basis, risk is co-determined by the effective dose, i.e. the plant's sensitivity per O3 uptake. Recent progress in research on the molecular and metabolic control of the effective O3 dose is reported along with advances in empirically assessing O3 uptake at the whole-tree and stand level. Knowledge on both O3 uptake and effective dose (measures of stress avoidance and tolerance, respectively) needs to be understood mechanistically and linked as a pre-requisite before practical use of process-based O3 risk assessment can be implemented. To this end, perspectives are derived for validating and promoting new O3 flux-based modelling tools.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号