首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal binding and release by solid humic acids (HAs) in soils and sediments can affect metal mobility and bioavailability. Isotherms for tight binding of Fe(III), Pb(II) and Cu(II) by a solid humic acid at pH2.0 fit the Langmuir binding model. Low pH was chosen to protonate the HA carboxylate groups and avoid metal cation hydrolysis. Binding of Fe(III), Pb(II) and Cu(II) occurs in one detectable step labeled A. Site capacities nu(A) are temperature-independent from 10.0 to 40.0 degrees C and point to binding by charge-neutralization to form solid complexes M(OOC-R)(n)(s), where n appears to be 2 for Pb(II) and 3 for Fe(III). Thermodynamic data pairs (DeltaH(A), DeltaS(A)) for metal binding are linearly correlated with previous data for Ca(II), Co(II) and Mg(II) binding by solid HAs.  相似文献   

2.
This work has examined cobalt(II) binding by a variety of solid humic acids (HAs) isolated from peat, plant and soil sources at temperatures down to 60K. The results confirm that X-ray absorption near-edge spectroscopy (XANES) measurements cannot distinguish between aquo and carboxylato ligands in the inner coordination sphere of Co(II). However, between 1 and 2 inner-sphere carboxylato ligands can be detected in all the peat, plant and soil-derived HA samples by extended X-ray absorption fine structure (EXAFS) measurements, indicating inner-sphere coordination of HA-bound Co(II). The precision of C(carboxylate) detection is limited by the extent and quality of the data and the contribution from inner-sphere O to the Fourier transformed peaks used to detect carbon. Putative chelate ring formation is consistent with a relatively negative entropy change in step A, the stronger Co(II) binding step by HA functional groups, and could relate to 'non-exchangeable' metal binding by HSs.  相似文献   

3.
The effect of the consecutive annual additions of pig slurry at rates of 0 (control), 90 and 150 m3 ha(-1) yr(-1) after a 7-year period on the Cu(II) and Zn(II) binding behavior of soil HAs was investigated in a field experiment. A fluorescence titration method and a single site model were used for determining metal ion complexing capacities and stability constants of metal ion complexes of HAs isolated from pig slurry and unamended and amended soils. With respect to control soil HA, pig-slurry HA featured much smaller Cu(II) and Zn(II) binding capacities and stability constants. Pig-slurry application to soil decreased Cu(II) and Zn(II) complexing capacities and binding affinities of soil HA. These effects increased with increasing the rate per year of PS application to soil, and are expected to have a large impact on bioavailability, mobilization, and transport of Cu(II) and Zn(II) ions in pig slurry-amended soils.  相似文献   

4.
The effect of the consecutive annual additions of pig slurry at rates of 0 (control), 90 and 150 m3 ha(-1) y(-1) over a 4-year period on the binding affinity for Cu(II) of soil humic acids (HAs) and fulvic acids (FAs) was investigated in a field plot experiment under semiarid conditions. A ligand potentiometric titration method and a single site model were used for determining the Cu(II) complexing capacities and the stability constants of Cu(II) complexes of HAs and FAs isolated from pig slurry and control and amended soils. The HAs complexing capacities and stability constants were larger than those of the corresponding FA fractions. With respect to the control soil HA, pig-slurry HA was characterized by a much smaller binding capacity and stability constant. Amendment with pig slurry decreased the binding affinity of soil HAs. Similar to the corresponding HAs, the binding affinity of pig-slurry FA was much smaller while that of amended-soil FAs were slightly smaller when compared to the control soil FA. The latter effect was, however, more evident with increasing the amount of pig slurry applied to soil per year and the number of years of pig slurry application.  相似文献   

5.
The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from liquid swine manure (LSM), soils amended with either 90 or 150 m(3)ha(-1)year(-1) of LSM for 7 years, and the corresponding unamended control soil were investigated by a current potentiometric titration method. The non-ideal competitive adsorption (NICA)-Donnan model for proton binding by two classes of binding sites (i.e., carboxylic- and phenolic-type groups) was fit to titration data, and a set of fitting parameters was obtained for each HA and FA sample. The NICA-Donnan model was shown to describe with a great degree of accuracy the behavior of experimental titration datasets, and highlighted important differences in the acid-base properties of the HAs and FAs examined. When compared to the unamended soil HA and FA, LSM-HA and LSM-FA, had smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, smaller heterogeneity of carboxylic-type groups, and smaller, in the case of HA, or similar, in the case of FA, heterogeneity of phenolic-type groups. Amendment with LSM caused a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. Further, LSM application induced a decrease of the heterogeneity of carboxylic-type groups, whereas appeared not to affect substantially the heterogeneity of phenolic-type groups of LSM-amended soil HAs and FAs. These effects were more evident for HAs than for FAs and tended to slightly increase with increasing LSM amendment rate.  相似文献   

6.
Binding of two model polycyclic aromatic hydrocarbons (PAHs), phenanthrene and pyrene, by humic acids (HAs) isolated from an organic substrate at different stages of composting and a soil was investigated using a batch fluorescence quenching method and the modified Freundlich model. With respect to soil HA, the organic substrate HA fractions were characterized by larger binding affinities for both phenanthrene and pyrene. Further, isotherm deviation from linearity was larger for soil HA than for organic substrate HAs, indicating a larger heterogeneity of binding sites in the former. The composting process decreased the binding affinity and increased the heterogeneity of binding sites of HAs. The changes undergone by the HA fraction during composting may be expected to contribute to facilitate microbial accessibility to PAHs. The results obtained also suggest that bioremediation of PAH-contaminated soils with matured compost, rather than with fresh organic amendments, may result in faster and more effective cleanup.  相似文献   

7.
Lippold H  Evans ND  Warwick P  Kupsch H 《Chemosphere》2007,67(5):1050-1056
Aiming at an assessment of counteractive effects on colloid-borne migration of actinides in the event of release from an underground repository, competition by Fe(III) in respect of metal complexation by dissolved organic matter was investigated for the example of Eu(III) as an analogue of trivalent actinides. Complexation with different humic materials was examined in cation exchange experiments, using (59)Fe and (152)Eu as radioactive tracers for measurements in dilute systems as encountered in nature. Competitive effects proved to be significant when Fe is present at micromolar concentrations. Flocculation as a limiting process was attributed to charge compensation of humic colloids. Fe fractions bound to humic acids (HA) were higher than 90%, exceeding the capacity of binding sites at high Fe concentrations. It is thus concluded that the polynuclear structure of hydrolysed Fe(III) is maintained when bound to HA, which is also inferred from UV-Vis spectrometry. The competitive effect was found to be enhanced if Fe and HA were in contact before Eu was added. Depending on the time of Fe/HA pre-equilibration, Eu complexation decreased asymptotically over a time period of several weeks, the amount of bound Fe being unchanged. Time-dependent observations of UV-Vis spectra and pH values revealed that the ageing effect was due to a decline in Fe hydrolysis rather than structural changes within HA molecules. Fe polycations are slowly degraded in contact with humic colloids, and more binding sites are occupied as a consequence of dispersion. The extent of degradation as derived from pH shifts depended on the Fe/HA ratio.  相似文献   

8.

Dissolved humic substances (DHSs) are the major components of organic matter in the aquatic environment. DHSs are well known to considerably affect the speciation, solubility, and toxicity of a wide variety of pollutants in the aquatic environment. In this study, the effects of the toxicity of heavy metals and hydrophobic organic pollutants (HOPs) on Chlamydomonas reinhardtii in the presence of humic acid (HA) were examined by a microscale algal growth inhibition (μ-AGI) test based on spectrophotometric detection. To clarify the relationship between the chemical properties of HAs and the toxicity change of pollutants, eight HAs from different sources were prepared and used. HAs were responsible for mitigating the toxicity of Hg, Cu, pesticides (γ-HCH, 2,4-D, and DDT), and polycyclic aromatic hydrocarbons (PAHs) such as naphthalene (Nap), anthracene (Ant), and benzo[a]pyrene (BaP). In particular, an approximately 100-fold decrease in the toxicity of BaP was observed in the presence of 10 ppm HAs extracted from tropical peat. The results indicated that the carboxylic group content and the HA molecular weight are correlated to the changes in the heavy metal toxicity. For HOPs, the aromaticity and polarity of HAs are crucial for mitigating their toxicity. Furthermore, it was clearly shown that the lake water including a high concentration of DHSs collected from Central Kalimantan, Indonesia, reduced the toxicity of Hg and γ-HCH on Chlamydomonas reinhardtii.

Graphical abstract

  相似文献   

9.
We examined the concentrations of 11 trace metals in tissues from 10 body parts of Great Tits and Greenfinches collected at Badachu Park in the Western Mountains of Beijing, China to assess the metal accumulation level, distribution among body parts, and species and gender related variations. The highest concentrations of Hg, Ni, Zn, and Mn were found in the feather; Pb and Co in the bone; Cd, Cr, and Se in the kidney, and Cu in the liver and heart. Metal concentrations had substantial interspecific variation with Great Tits showing higher levels of Hg, Cr, Ni, and Mn than Greenfinches in tissues of most body parts. Gender related variations were body part and species specific. Meta-analyses using data from this study and other studies suggested that metal concentrations of Great Tits at our study site were relatively low and below the toxic levels.  相似文献   

10.
Kamiya M  Kameyama K 《Chemosphere》2001,45(3):231-235
Selected metal ions having paramagnetic property were found to exert inhibition effects on aquatic photodegradation of organophosphorus pesticides sensitized by humic acids, according to the increasing order of Cr(III) < Co(II) < Mn(II) < Cu(II). Basic factors dominating the metal-ion effects were clarified on the basis of the fluorescence quenching as well as radical scavenging abilities of metal ions complexed with humic acids.  相似文献   

11.
Wang J  Ban H  Teng X  Wang H  Ladwig K 《Chemosphere》2006,64(11):1892-1898
Many coal-fired power plants are implementing ammonia-based technologies to reduce NO(x) emissions. Excess ammonia in the flue gas often deposits on the coal fly ash. Ammonia can form complexes with many heavy metals and change the leaching characteristics of these metals. This research tends to develop a fundamental understanding of the ammonia impact on the leaching of some heavy metals, exemplified by Cu(II) and Cd(II), under different pH conditions. Batch results indicated that the adsorption is the main mechanism controlling Cu(II) and Cd(II) leaching, and high concentrations of ammonia (>5,000 mg/l) can increase the release of Cu(II) and Cd(II) in the alkaline pH range. Based on the chemical reactions among fly ash, ammonia, and heavy metal ion, a mathematical model was developed to quantify effects of pH and ammonia on metal adsorption. The adsorption constants (logK) of Cu(2+), Cu(OH)(+), Cu(OH)(2), and Cu(NH(3))(m)(2+) for the fly ash under investigation were respectively 6.0, 7.7, 9.6, and 2.9. For Cd(II), these constants were respectively 4.3, 6.9, 8.8, and 2.6. Metal speciation calculations indicated that the formation of less adsorbable metal-ammonia complexes decreased metal adsorption, therefore enhanced metal leaching.  相似文献   

12.
Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co.  相似文献   

13.
The sorption behaviour of the severely toxic heavy metal thallium (Tl) as a monovalent cation onto three representative materials (goethite, pyrolusite and a natural sediment sampled from a field site) was examined as a function of pH in the absence and presence of two natural humic acids (HAs), using 204Tl(I) as a radiotracer. In order to obtain a basic understanding of trends in the pH dependence of Tl(I) sorption with and without HA, sorption of HAs and humate complexation of Tl(I) as a function of pH were investigated as well. In spite of the low complexation between Tl(I) and HAs, the presence of HAs results in obvious alterations of Tl(I) sorption onto pyrolusite and sediment. An influence on Tl(I) sorption onto goethite was not observed. Predictions of Kd (distribution coefficient) for Tl(I) on goethite in the presence of HAs, based on a linear additive model, agree well with the experimental data, while a notable disagreement occurs for the pyrolusite and sediment systems. Accordingly, it is suggested that HAs and goethite may act as a non-interacting sorbent mixture under the given conditions, but more complex interactions may take place between the HAs and the mineral phases of pyrolusite or sediment.  相似文献   

14.
Conventional fluorescence spectroscopy in the excitation, emission and synchronous scan modes and three-dimensional fluorescence spectroscopy in the form of an excitation-emission matrix (EEM) of fluorescence intensity as a function of excitation and emission wavelengths have been applied to the study of three humic acids (HAs) extracted from soil (SHA), peat (PHA) and compost (CHA) and their interaction products with Zn(II) and Ni(II) ions. Fluorescence spectra of HAs appear to be related to the nature and origin of the sample. A strong reduction of intensity of all peaks is observed in the spectra of HAs-metal complexes as compared to those of untreated HAs. Ni(II) exhibits greater quenching ability than Zn(II). Fluorescence quenching measured for complexes of HAs at increasing Ni(II) concentrations was linearly correlated with metal ion concentration. The different capacity to interact with metal ions showed by various HAs is attributed to their different molecular complexity.  相似文献   

15.
The adsorptive interactions of Hg(II) with gibbsite-rich soils (hereafter SOIL-g) were modeled by 1-pK surface complexation theory using charge distribution multi-site ion competition model (CD MUSIC) incorporating basic Stern layer model (BSM) to account for electrostatic effects. The model calibrations were performed for the experimental data of synthetic gibbsite-Hg(II) adsorption. When [NaNO(3)] > or = 0.01M, the Hg(II) adsorption density values, of gibbsite, Gamma(Hg(II)), showed a negligible variation with ionic strength. However, Gamma(Hg(II)) values show a marked variation with the [Cl(-)]. When [Cl(-)] > or = 0.01M, the Gamma(Hg(II)) values showed a significant reduction with the pH. The Hg(II) adsorption behavior in NaNO(3) was modeled assuming homogeneous solid surface. The introduction of high affinity sites, i.e., >Al(s)OH at a low concentration (typically about 0.045 sites nm(-2)) is required to model Hg(II) adsorption in NaCl. According to IR spectroscopic data, the bauxitic soil (SOIL-g) is characterized by gibbsite and bayerite. These mineral phases were not treated discretely in modeling of Hg(II) and soil interactions. The CD MUSIC/BSM model combination can be used to model Hg(II) adsorption on bauxitic soil. The role of organic matter seems to play a role on Hg(II) binding when pH>8. The Hg(II) adsorption in the presence of excess Cl(-) ions required the selection of high affinity sites in modeling.  相似文献   

16.
The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.  相似文献   

17.
This research was conducted to study the influence of composting on the concentrations, water solubility, and phase association of Cu, Mn, and Zn from swine (Sus domesticus) feces. Composting of separated swine manure was performed in two piles for 122 days. The metal concentrations increased rapidly during the first 49 days and leveled off thereafter. All metal concentrations increased approximately 2.7-fold in the final compost due to decomposition of organic matter. A sequential extraction protocol was used to evaluate the humification process and partition metals into water-soluble, exchangeable, organically complexed, organically bound, solid particulate, and residual fractions. Temporal changes in the water-soluble fractions of Cu, Mn, and Zn were reflected by water-soluble organic C concentrations, which rapidly increased to a maximum at Day 18 and declined thereafter. An increase in the humic acid/fulvic acid ratio in Na4P2O7 or NaOH extracts at various stages of composting represented the humification process. During composting, the major portions of Cu, Mn, and Zn were in the organically-bound, solid particulate, and organically complexed fractions, respectively. Metal distributions in different chemical fractions were generally independent of composting age and, thus, independent of respective total metal concentrations in the composts.  相似文献   

18.
In order to investigate the influence of organic matter on arsenic retention, we used batch experiments at pH 7 to determine the adsorption of As(V) on three different solids: a crude, purified, Ca-exchanged kaolinite and two kaolinites coated with humic acids (HAs) having different nitrogen contents. We first examined the adsorption of each HA onto kaolinite, and then used the HA-kaolinite complexes to study As(V) adsorption. The results clearly show an influence of the HA coating on As adsorption. For example, with low initial As concentrations the solid/liquid partition coefficient (R(d)) for both HA complexes is greater than that for the crude kaolinite. We found that increasing the initial As concentrations decreased the R(d) values of the HA-coated kaolinites until finally they were the same as the crude kaolinite R(d) values. This suggests that adsorption occurs first on the HA sites and then, once the HA sites are saturated, on the remaining kaolinite sites. We also noted that the more reactive HA-kaolinite complex was the one with the highest N/C ratio. Comparing the amount of amine groups in the HA-kaolinite complexes with the total amount of adsorbed As indicates that the HA amine groups, due to their positive charge at pH 7, play a key role in the adsorption of As onto organic matter.  相似文献   

19.
Arias M  Barral MT  Mejuto JC 《Chemosphere》2002,48(10):1081-1088
The competitive adsorption equilibrium isotherms of Cu2+ and Cd2+ on kaolin have been measured at 298 K, in the presence and the absence of humic acids (HAs). HAs were found to enhance the metal adsorption capacity of mineral surfaces, in particular kaolin. This enhancement was also observed in the competitive adsorption of copper and cadmium on kaolin and kaolin–HA complex. This competitive adsorption shows that the presence of Cd2+ has not an important effect on Cu2+ adsorption, whereas a dramatic decrease is observed on the adsorption of Cd2+ in the presence of Cu2+. The Freundlich isotherm equation was found to provide an excellent fit to the experimental data. These results were compared with the independent adsorption of both heavy metals.  相似文献   

20.
Adani F  Ricca G  Tambone F  Genevini P 《Chemosphere》2006,65(8):1300-1307
Humic acid consists of a recalcitrant (unhydrolysed fraction) (the core) and labile (hydrolysable fraction) fraction. Core-humic acid (core-HA) isolation was performed by treating source material with apolar and polar solvents (organic solvents+acid hydrolysis) before alkaline extraction. Leonardite, soil Ah horizont and dry blood were chosen for this study because of their different origin and degree of humification. Chemical analysis (elemental analysis, total acidity, E(4):E(6)), spectroscopic analysis (DRIFT and (1)H NMR), and complete mass balance were used to investigate the effect of purifying humic acids. The results obtained showed that purification produced a slight modification of Leonardite humic acids as was expected for these highly humified organic matrices. On the other hand, about 500 g kg(-1) of soil humic acids were lost by purification. The fractions lost mainly consisted of carbohydrates. Dry blood showed the presence of humic acids that contrasted with its origin, thus indicating the limitations of the common analytical methods used for HA extraction. Nevertheless, in practice, purification caused the complete disappearance (914 g kg(-1) of HA was lost) of these HAs. The results obtained in this work suggest that the HA fraction isolated (named core-HA) effectively represents the HA structure proposed by the existing literature, since the purification proposed was able to eliminate the adsorbed organic molecules (interference materials) coating the HA structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号