首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The degradation of 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as chlorophenoxy herbicides, as well as of 3,6-dichloro-2-methoxybenzoic acid (dicamba) as chlorobenzoic herbicide, has been studied by peroxi-coagulation. This electrochemical method yields a very effective depollution of all compounds in acidic aqueous medium of pH 3.0 working under pH regulation, since they are oxidized with hydroxyl radicals produced from Fenton's reaction between Fe(2+) and H(2)O(2) generated by the corresponding Fe anode and O(2)-diffusion cathode. Their products can then be removed by mineralization or coagulation with the Fe(OH)(3) precipitate formed. Both degradative paths compete at low currents, but coagulation predominates at high currents. The peroxi-coagulation process of dicamba at I>or=300 mA leads to more than 90% of coagulation, being much more efficient than its comparative electro-Fenton treatment with a Pt anode and 1 mM Fe(2+), where only mineralization takes place. For the chlorophenoxy compounds, electro-Fenton gives a slightly lower depollution than peroxi-coagulation, because more easily oxidable products are produced. Oxidation of chlorinated products during peroxi-coagulation is accompanied by the release of chloride ion to the solution. The efficiency of this method decreases with increasing electrolysis time and current. The decay of all herbicides follows a pseudo-first-order reaction, with a similar constant rate for 4-CPA, MCPA, 2,4-D and 2,4,5-T, and a higher value for dicamba.  相似文献   

2.
To assess the relative toxicity of the herbicides acetochlor and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) on the nervous system, the sciatic nerve of the frog (Rana ridibunda) nerve was incubated in saline inside a specially designed recording chamber. This chamber permits monitoring of the evoked compound action potential (CAP) of the nerve, a parameter that could be used to quantify the vitality of the nerve in normal conditions as well as when the nerve was exposed to the compounds under investigation. Thus, when the nerve was exposed to acetochlor, the EC(50) was estimated to be 0.22mM, while for 2,4,5-T the EC(50) was 0.90mM. Using the identical nerve preparation, the EC(50) of 2,4-D was estimated to be 3.80mM [Kouri, G., Theophilidis, G., 2002. The action of the herbicide 2,4-dichlorophenoxyacetic acid on the isolated sciatic nerve of the frog (Rana ridibunda). Neurotoxicol. Res. 4, 25-32]. The ratio of the relative toxicity for acetochlor, 2,4,5-T and 2,4-D was found to be 1:4:17.2. However, because it is well-known that the action of 2,4-D is dependent on the pH, the relative toxicity of the three compounds was tested at pH 3.3, since it has been found that the sciatic nerve of the frog is tolerant of such a low pH. Under these conditions, the EC(50) was 0.77mM (from 0.22mM at pH 7.2) for acetochlor, 0.20mM (from 0.90mM) for 2,4,5-T and 0.24mM (from 3.80mM at pH 7.2) for 2,4-D. Thus, the relative toxicity of the three compounds changed drastically to 1:0.25:0.31. This change in the relative toxicity is due not only to the increase in the toxicity of 2,4,5-T and 2,4-D at low pH levels, but also to the decrease in the toxicity of acetochlor at pH 3.3.  相似文献   

3.
Polyurethane foam was an efficient adsorbent for trapping vapors of butyl esters of 2,4-D (2,4-dichlorophenoxyacetic acid) and triallate (S-(2,3,3-trichloroallyl)diisopropylthiocarbamate) in high volume air monitoring studies and of butyl esters of 2,4-D, iso-octyl ester of 2,4-D, n-butyl ester of 2,4,5-T (2,4,5-trichlorophenoxyacetic acid), bromoxynil octanoate (2,5-dibromo-4-hydroxybenzonitrile), triallate, and trifluralin (alpha, alpha, alpha-trifluoro-2,6-dinitro-N-N-dipropyl-p-toluidine) in short-term, low volume, worker inhalation exposure studies. The collected herbicide vapor was readily desorbed under soxhlet extraction with n-hexane and subsequently analyzed with electron-capture GLC. The overall efficiencies, for both trapping and extraction, were over 90%, using a single plug, for all herbicides, except triallate. In the case of triallate, two plugs in series were required for efficient trapping under the high volume air monitoring situation.  相似文献   

4.
A population of the tortoise Testudo hermanni near Olympia in southern Greece was studied by mark-recapture from 1975 to 1984. Part of the site was sprayed with the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) each year from 1980, producing symptoms of poisoning (swollen eyes, fluid discharge from the nose and immobility) in tortoises. Survival rates of tortoises 10 cm or larger were significantly lower in the affected areas, with extra mortality of about 34% year-1, against an annual survival rate of 0.85-0.90 in unaffected areas. Changing population structures showed that juveniles were even more strongly affected, with the proportion of juveniles in samples decreased by half. The population in the sprayed area declined to near zero by 1984, due to mortality rather than to emigration, since more movements were recorded into than out of the affected area. There was no difference in body mass condition between sprayed and unsprayed areas, showing that effects were acute; mortality was not due to starvation from loss of food plants. The scale and pattern of mortality was similar to that from a severe scrub fire; spraying is potentially more catastrophic since often repeated at shorter intervals than burning. Possible physiological mechanisms of death are discussed. The susceptibility of tortoises to 2,4-D and 2,4,5-T (or to associated dioxin impurities) presents a warning for conservation of these late-maturing animals.  相似文献   

5.
Upon heating of 2,4,5-T to 600°C, 2,3,7,8-TCDD is formed with a yield of 0,2 %. At 800°C, the formation of TCDD decreases by a factor at 200. Tormona 80® an ester at 2,4,5-T yields 200 ppm TCDD at 600°C and 3 ppm at 800°C. The highest formation rate is observed for 2,4,5-Trichlorophenol (0,5 % at 600°C). During the thermolysis of 2,4-D, γ-Hexachlorocyclohexane, 2,4,6-Trichlorophenol, Pentachlorophenol and Clophen A 40. 2,3,7,8-TCDD could not be detected.  相似文献   

6.
Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.  相似文献   

7.
High volume air sampling in the Canadian Prairies was used to characterize atmospheric concentrations for 10 herbicides (alachlor, atrazine, ethalfluralin, metolachlor, 2,4-D, dicamba, bromoxynil, MCPA, trifluralin, and triallate) along a 500-km north-south transect. Atmospheric concentration measurements at various altitudes identified that of the six herbicides present in the highest concentrations, triallate was strongly influenced by local sources, while 2,4-D, dicamba, bromoxynil, MCPA and trifluralin were dominated by regional atmospheric transport. Concentrations of the herbicides measured at various altitudes were compared with dry deposition rates measured using a dry/wet deposition sampler and used to calculate deposition velocities V(d). The primary atmospheric transport mechanism for MCPA and bromoxynil was shown to be adsorption to particles dispersed in the atmosphere, with the same mechanism also confirmed for 2,4-D and dicamba, while trifluralin was shown to be transported mainly in the gas phase. This method of calculation indicated that transportation of triallate was influenced by particle adsorption. Weekly maximum atmospheric loadings of the major herbicides present in the Prairies were estimated to range from 73 kg for trifluralin to 541 kg for 2,4-D.  相似文献   

8.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is a widely used broadleaf control agent in cereal production systems. Although 2,4-D soil-residual activity (half-lives) are typically less than 10 days, this herbicide also has as a short-term leaching potential due to its relatively weak retention by soil constituents. Herbicide residual effects and leaching are influenced by environmental variables such as soil moisture and temperature. The objective of this study was to determine impacts of these environmental variables on the magnitude and extent of 2,4-D mineralization in a cultivated undulating Manitoba prairie landscape. Microcosm incubation experiments were utilized to assess 2,4-D half-lives and total mineralization using a 4 × 4 × 3 × 2 factorial design (with soil temperature at 4 levels: 5, 10, 20 and 40°C; soil moisture at 4 levels: 60, 85, 110, 135 % of field capacity; slope position at 3 levels: upper-, mid- and lower-slopes; and soil depth at 2 levels: 0-5 cm and 5-15 cm). Half-lives (t(?)) varied from 3 days to 51 days with the total 2,4-D mineralization (M(T)) ranging from 5.8 to 50.9 %. The four-way interaction (temperature × moisture × slope × depth) significantly (p < 0.001) influenced both t(?) and M(T). Second-order polynomial equations best described the relations of temperature with t(?) and M(T) as was expected from a biological system. However, the interaction and variability of t(?) and M(T) among different temperatures, soil moistures, slope positions, and soil depth combinations indicates that the complex nature of these interacting factors should be considered when applying 2,4-D in agricultural fields and in utilizing these parameters in pesticide fate models.  相似文献   

9.
The biodegradation of selected priority acidic pesticides MCPP, MCPA, 2,4-D, 2,4-DP and bentazone and the acidic pharmaceutical diclofenac was investigated using a membrane bioreactor (MBR) and a fixed-bed bioreactor (FBBR). A pilot plant MBR was fed with raw water spiked with the selected compounds. The experiment was repeated every week during four weeks to enhance the adaptation of microorganisms. In order to further study the biodegradability of these compounds, degradation studies in a FBBR were carried out. All the samples were analysed by solid phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS). The results indicate that in the MBR compounds except for bentazone were eliminated within the first day of the experiment at rates ranging from 44% to 85%. Comparing these results with the degradation rates in the FBBR showed that in the latter only MCPP, MCPA 2,4-D and 2,4-DP were degraded after a much longer adaptation phase of microorganisms.  相似文献   

10.
The biodegradability of nitrochlorinated (diuron and atrazine) and chlorophenoxy herbicides (2,4-D and MCPA) has been studied through several bioassays using different testing times and biomass/substrate ratios. A fast biodegradability test using unacclimated activated sludge yielded no biodegradation of the herbicides in 24 h. The inherent biodegradability test gave degradation percentages of around 20–30 % for the nitrochlorinated herbicides and almost complete removal of the chlorophenoxy compounds. Long-term biodegradability assays were performed using sequencing batch reactor (SBR) and sequencing batch membrane bioreactor (SB-MBR). Fixed concentrations of each herbicide below the corresponding EC50 value for activated sludge were used (30 mg L?1 for diuron and atrazine and 50 mg L?1 for 2,4-D and MCPA). No signs of herbicide degradation appeared before 35 days in the case of diuron and atrazine and 21 days for 2,4-D, whereas MCPA was partially degraded since the early stages. Around 25–36 % degradation of the nitrochlorinated herbicides and 53–77 % of the chlorophenoxy ones was achieved after 180 and 135 days, respectively, in SBR, whereas complete disappearance of 2,4-D was reached after 80 days in SB-MBR.  相似文献   

11.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

12.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is a widely used broadleaf control agent in cereal production systems. Although 2,4-D soil-residual activity (half-lives) are typicaly less than 10 days, this herbicide also has as a short-term leaching potential due to its relatively weak retention by soil constituents. Herbicide residual effects and leaching are influenced by environmental variables such as soil moisture and temperature. The objective of this study was to determine impacts of these environmental variables on the magnitude and extent of 2,4-D mineralization in a cultivated undulating Manitoba prairie landscape. Microcosm incubation experiments were utilized to assess 2,4-D half-lives and total mineralization using a 4 × 4 × 3 × 2 factorial design (with soil temperature at 4 levels: 5, 10, 20 and 40°C; soil moisture at 4 levels: 60, 85, 110, 135 % of field capacity; slope position at 3 levels: upper-, mid- and lower-slopes; and soil depth at 2 levels: 0–5 cm and 5–15 cm). Half-lives (t1/2) varied from 3 days to 51 days with the total 2,4-D mineralization (M T ) ranging from 5.8 to 50.9 %. The four-way interaction (temperature × moisture × slope × depth) significantly (p< 0.001) influenced both t1/2 and M T. Second-order polynomial equations best described the relations of temperature with t1/2 and MT as was expected from a biological system. However, the interaction and variability of t1/2 and MT among different temperatures, soil moistures, slope positions, and soil depth combinations indicates that the complex nature of these interacting factors should be considered when applying 2,4-D in agricultural fields and in utilizing these parameters in pesticide fate models.  相似文献   

13.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 x 3 x 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0-5 and 5-15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k(1)) varied from 0.03 to 0.22 day(- 1), while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k(1) and total 2,4-D mineralization was significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 microg (1-1/n)g(- 1) mL(1/n) and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   

14.
BACKGROUND: From 1961-1971, The Air Development Test Center, Eglin Air Force Base (AFB), Florida, developed, tested, and calibrated the aerial spray systems used in support of Operation RANCH HAND and the US Army Chemical Corps in Vietnam. Twenty major test and evaluation projects of aerial spray equipment were conducted on four fully instrumented test grids, each uniquely arrayed to match the needs of fixed-wing, helicopter, or jet aircraft. Each of the grids was established within the boundary of Test Area 52A of the Eglin Reservation. METHODS: The tests, conducted under climatic and environmental conditions similar to those in Vietnam, included the use of the military herbicides (Agents) Orange, Purple, White, and Blue. Approximately 75,000 kg of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 76,000 kg of 2,4-dichlorophenoxyacetic acid (2,4-D) were aerially disseminated on an area of less than 3 km2 during the period 1962-1970. Data from the analysis of archived samples suggested that an estimated 3.1 kg of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), present as a contaminant, were aerially released in the test area. Because most of the vegetation had been removed before establishing the test site in 1961, there was an opportunity to follow ground-based residues independent of canopy interception, and the resulting high solar exposure of initial residues. Studies of the soils, fauna, flora, and aquatic ecosystems of the test grids and associated perimeters of Test Area C-52A (an area totally more than 8 km2) were initiated in 1969 and concluded in 1984. RESULTS AND DISCUSSION: Data from soil samples collected from 1974 through 1984 suggested that less than one percent of the TCDD that was present in soil when sampling began persisted through the ten-year period of sampling. More than 340 species of organisms were observed and identified within the test area. More than 300 biological samples were analyzed for TCDD and detectable residues were found in 16 of 45 species examined. Examination of the ecological niches of the species containing TCDD residues suggested each was in close contact with contaminated soil. Indepth field studies, including anatomical, histological and ultrastructural examinations, spanning more than 50 generations of the Beachmouse, Peromyscus polionotus, demonstrated that continual exposure to soil concentrations of 0.1 to 1.5 parts-per-billion (ng/g) of TCDD, had minimal effects upon the health and reproduction of this species. CONCLUSIONS: Since Agent Orange with its associated TCDD contaminant was aerially disseminated on the test grids, Test Area C-52A provided a 'field laboratory' for what may have happened in Vietnam, had there been no intercepting forest cover. However, in Vietnam a 'typical' mission would have disseminated 14.8 kg of 2,4,5-T/ha, most of which was intercepted by the forest canopy, versus the 876 kg 2,4,5-T/ha on the test grid at Eglin. Moreover, each hectare on the Eglin test grid received at least 1,300 times more TCDD than a hectare sprayed with Agent Orange in Vietnam. The disappearance or persistence of TCDD is dependent upon how it enters the ecosystem. Spray equipment test and evaluations missions at Eglin were generally scheduled and conducted with environmental conditions that were optimal for spray operations. This suggests that conditions favorable for dissemination of herbicide were the same conditions favorable for photodegradation of TCDD. It was likely that 99 percent of the TCDD never persisted beyond the day of application. No long-term adverse ecological effects were documented in these studies despite the massive quantities of herbicides and TCDD that were applied to the site. Reviews by the US Environmental Protection Agency and the National Academy of Sciences' Institute of Medicine did not address the fate of Agent Orange and TCDD as described in these studies from Eglin AFB, Florida.  相似文献   

15.
In this study, we used primary cultures of fish hepatic cells as a tool for evaluating the effects of environmental contamination. Primary hepatic cell cultures derived from the subtropical fish Metynnis roosevelti were exposed to different concentrations (0.275, 2.75 and 27.5 μg L?1) of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA). Cellular respiratory activity was evaluated by polarography using three substrates: 0.5 M glucose, 0.5 M succinate and 0.5 M α-ketoglutarate. Significant changes were observed in cellular oxygen consumption with 0.5 M α-ketoglutarate. Even at low concentrations, 2,4-D and MCPA were potent uncouplers of oxidative phosphorylation. Primary cultures of M. roosevelti liver cells may provide a useful tool for the evaluation of environmental contaminant effects. A review of regulations regarding permitted concentrations of these herbicides is needed.  相似文献   

16.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

17.

The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20°C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

18.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 × 3 × 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0–5 and 5–15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k1) varied from 0.03 to 0.22 day? 1, while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k1 and total 2,4-D mineralizationwas significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 ug 1–1/ng? 1 mL1/n and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   

19.
Abstract

The potential for dechlorinating 2,4‐dichlorophenoxyacetic acid (2,4‐D) and 2,4,5‐trichlorophenoxyacetic acid (2,4,5‐T) in soil with a consortium showing stable dechlorinating activity was investigated. The effects of adding electron donors and/or acceptors under three anaerobic reducing conditions was compared. Results show that both 2,4‐D and 2,4,5‐T dechlorination rates were enhanced in methanogenic conditions, delayed in sulfate‐reducing conditions, and inhibited in denitrifying conditions. Also under the same three conditions dechlorination was be enhanced by the addition of lactate, pyruvate, and acetate, delayed by the addition of manganese oxide and vitamin B12, and inhibited by the addition of ferric chloride. Response to treatment with such microbial inhibitors as bromoethane sulfonic acid (BESA), vancomycin, and molybdate suggests that the major bacteria involved in 2,4‐D and 2,4,5‐T dechlonnation is methanogen followed joined by sulfate‐reducing bacteria and eubacteria.  相似文献   

20.
The herbicide 2,4-D is often applied as a tank mixture in combination with other herbicide products. However, current information on 2,4-D sorption by soil is largely based on batch-equilibrium experiments without considering the competition of other herbicides for sorption sites by soil. This study quantified the effect of the herbicide propanil on the sorption of 2,4-D in soil. Results indicated that propanil competed with 2,4-D for sorption sites, particularly in soils with an organic carbon content greater than 3.6%. The decrease in 2,4-D sorption by soil, as a result of propanil competition, was most notably for herbicide concentrations that are typical of recommended field rates. We conclude that herbicide co-applications on agricultural fields have the potential to increase the mobility of herbicides in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号