首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The fate of selected pesticides (bentazone, isoproturon, DNOC, MCPP, dichlorprop and 2,4-D) and a metabolite (2,6-dichlorobenzamide (BAM)) was investigated under aerobic conditions in column experiments using aquifer material and low concentrations of pesticides (approximately 25 microg/l). A solute transport model accounting for kinetic sorption and degradation was used to estimate sorption and degradation parameters. Isoproturon and DNOC were significantly retarded by sorption, whereas the retardation of the phenoxy acids (MCPP, 2,4-D and dichlorprop), BAM and bentazone was very low. After lag periods of 16-33 days for the phenoxy acids and 80 days for DNOC, these pesticides were degraded quickly with 0.-order rate constants of 1.3-2.6 microg/l/day. None of the most probable degradation products were detected.  相似文献   

2.
The biodegradability of nitrochlorinated (diuron and atrazine) and chlorophenoxy herbicides (2,4-D and MCPA) has been studied through several bioassays using different testing times and biomass/substrate ratios. A fast biodegradability test using unacclimated activated sludge yielded no biodegradation of the herbicides in 24 h. The inherent biodegradability test gave degradation percentages of around 20–30 % for the nitrochlorinated herbicides and almost complete removal of the chlorophenoxy compounds. Long-term biodegradability assays were performed using sequencing batch reactor (SBR) and sequencing batch membrane bioreactor (SB-MBR). Fixed concentrations of each herbicide below the corresponding EC50 value for activated sludge were used (30 mg L?1 for diuron and atrazine and 50 mg L?1 for 2,4-D and MCPA). No signs of herbicide degradation appeared before 35 days in the case of diuron and atrazine and 21 days for 2,4-D, whereas MCPA was partially degraded since the early stages. Around 25–36 % degradation of the nitrochlorinated herbicides and 53–77 % of the chlorophenoxy ones was achieved after 180 and 135 days, respectively, in SBR, whereas complete disappearance of 2,4-D was reached after 80 days in SB-MBR.  相似文献   

3.
A solid-phase microextraction (SPME) method was developed for the analysis of acidic pesticide residues in water. The method utilizes in situ derivatization with butylchloroformate (BuCF), followed by on-line SPME extraction using a PDMS fibre, and analysis by GC-MS. Derivatives of the phenoxy acids mechlorprop (MCPP), dichlorprop (DCPP), MCPA and 2,4-D and their phenol degradation products 4-chloro-2-methylphenol and 2,4-dichlorophenol (DCP) were identified. Detection limits at 0.16-2.3 microg/l were achieved. Optimization of derivatization, ion strength, extraction time, SPME-fibre, desorption time and temperature are described. Standard curves in the range 0.5-10.0 microg/l were fitted to a second-degree polynomial. Standard deviation (n = 5) was below 10% for the phenol derivatives, but 20-50% for the phenoxy acids. For method verification groundwater samples from a field experiment were screened for content of MCPP and compared to the results from the HPLC analysis. A good agreement was obtained with respect to identification of positive samples, even though concentrations measured by the SPME were lower than with HPLC. Even if the precision and accuracy do not meet the demands for a strictly quantitative analysis, the SPME method is suitable for screening, because it is cheap, it can be automated, and uses smaller amounts of potential harmful solvents. Also, the method is less labour-intensive, as it requires a minimum of sample preparation when compared to traditional analyses. The acidic pesticides bentazon, dicamba, bromoxynil, ioxynil, dinoseb and DNOC were included in the study but could not be analysed by the current method.  相似文献   

4.
In this study, a fixed bed flow through UVA-LED photoreactor was used to compare the efficiency of ozone, photocatalysis and photocatalysis-ozone degradation, and mineralization of two pure pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA), and a commercial one, Killex®. For the degradation of the parent compounds, ozone-based processes were more effective. While for mineralization, photocatalytic processes were more effective. Photocatalytic ozonation was the most efficient process for both the degradation and mineralization of the parent compounds. The degradation rates and mineralization by photocatalytic ozonation were higher than the summation of the corresponding rates by ozonation and photocatalysis, indicating a symbiotic relationship.Overall, the photocatalytic ozonation process with the fixed bed TiO2 reduces the time needed for the degradation and mineralization of the pesticides, reduces the costs of powder catalyst separation and overcomes the reduced efficiency of immobilized catalysts, which makes the process quite attractive for practical applications.  相似文献   

5.
Fate of chlorophenoxyacetic acids in acid soil   总被引:1,自引:0,他引:1  
The relative persistence of MCPA, 2,4-D and 2,4,5-T in an acid soil was assessed under laboratory conditions with field capacity and flooded level of soil moisture. The experimental soil was incubated for 96 weeks and samples were collected at a specific interval for the determination of the residues by the gas chromatography. The decomposition was faster with MCPA than those of 2,4-D and 2,4,5-T. Soil moisture affected the degradation rate sharply.  相似文献   

6.
The degradation of 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as chlorophenoxy herbicides, as well as of 3,6-dichloro-2-methoxybenzoic acid (dicamba) as chlorobenzoic herbicide, has been studied by peroxi-coagulation. This electrochemical method yields a very effective depollution of all compounds in acidic aqueous medium of pH 3.0 working under pH regulation, since they are oxidized with hydroxyl radicals produced from Fenton's reaction between Fe(2+) and H(2)O(2) generated by the corresponding Fe anode and O(2)-diffusion cathode. Their products can then be removed by mineralization or coagulation with the Fe(OH)(3) precipitate formed. Both degradative paths compete at low currents, but coagulation predominates at high currents. The peroxi-coagulation process of dicamba at I>or=300 mA leads to more than 90% of coagulation, being much more efficient than its comparative electro-Fenton treatment with a Pt anode and 1 mM Fe(2+), where only mineralization takes place. For the chlorophenoxy compounds, electro-Fenton gives a slightly lower depollution than peroxi-coagulation, because more easily oxidable products are produced. Oxidation of chlorinated products during peroxi-coagulation is accompanied by the release of chloride ion to the solution. The efficiency of this method decreases with increasing electrolysis time and current. The decay of all herbicides follows a pseudo-first-order reaction, with a similar constant rate for 4-CPA, MCPA, 2,4-D and 2,4,5-T, and a higher value for dicamba.  相似文献   

7.
High volume air sampling in the Canadian Prairies was used to characterize atmospheric concentrations for 10 herbicides (alachlor, atrazine, ethalfluralin, metolachlor, 2,4-D, dicamba, bromoxynil, MCPA, trifluralin, and triallate) along a 500-km north-south transect. Atmospheric concentration measurements at various altitudes identified that of the six herbicides present in the highest concentrations, triallate was strongly influenced by local sources, while 2,4-D, dicamba, bromoxynil, MCPA and trifluralin were dominated by regional atmospheric transport. Concentrations of the herbicides measured at various altitudes were compared with dry deposition rates measured using a dry/wet deposition sampler and used to calculate deposition velocities V(d). The primary atmospheric transport mechanism for MCPA and bromoxynil was shown to be adsorption to particles dispersed in the atmosphere, with the same mechanism also confirmed for 2,4-D and dicamba, while trifluralin was shown to be transported mainly in the gas phase. This method of calculation indicated that transportation of triallate was influenced by particle adsorption. Weekly maximum atmospheric loadings of the major herbicides present in the Prairies were estimated to range from 73 kg for trifluralin to 541 kg for 2,4-D.  相似文献   

8.
The mobility of acid herbicide (4-chloro-2-methylphenoxy)acetic acid [MCPA] and 2-(4-chloro-2-methylphenoxy)propionic acid [MCPA] in soils of North-West Croatia has been studied by soil thin-layer chromatography (STLC). Mobility of MPCA and MCPP was influenced by the change in concentration of soluble salts and the effect of mineral composition of the system studied, i.e. content of kaolin and sand in soil thin layer. The objective of this work was also to investigate how the mobility of phenoxy herbicides MCPA and MCPP is altered by the presence of fertilizers when both coexist in soil as a result of human activity. It has been found that mobility of acidic herbicides increases with application of fertilizers especially on soil with low clay and low organic matter content.  相似文献   

9.
Phenoxyacetic and benzoic acid herbicides are widely used agricultural, commercial, and domestic pesticides. As a result of high water solubility, mobility, and persistence, 2,4-dichlorophenoxyacetic acid (2,4-D), methylchlorophenoxypropionic acid (mecoprop), and 3,6-dichloro-2-methoxybenzoic acid (dicamba) have been detected in surface and waste waters across Canada. As current municipal wastewater treatment plants do not specifically address chronic, trace levels of contaminants like pesticides, an urgent need exists for an efficient, environmentally friendly means of breaking down these toxic herbicides. A commercially available herbicide mix, WeedEx, containing 2,4-D, mecoprop, and dicamba, was subjected to treatment using membrane bioreactor (MBR) technology. The three herbicides, in simulated wastewater with a chemical oxygen demand of 745 mg/L, were introduced to the MBR at concentrations ranging from 300 μg/L to 3.5 mg/L. Herbicides and biodegradation products were extracted from MBR effluent using solid-phase extraction followed by detection using high-performance liquid chromatography coupled with mass spectrometry. 2,4-D was reduced by more than 99.0 % within 12 days. Mecoprop and dicamba were more persistent and reduced by 69.0 and 75.4 %, respectively, after 112 days of treatment. Half-lives of 2,4-D, mecoprop and dicamba during the treatment were determined to be 1.9, 10.5, and 28.3 days, respectively. Important water quality parameters of the effluent such as dissolved oxygen, pH, ammonia, chemical oxygen demand, etc. were measured daily. MBR was demonstrated to be an environmentally friendly, compact, and efficient method for the treatment of toxic phenoxyacetic and benzoic acid herbicides.  相似文献   

10.

Background and purposes

The pathways used by microorganisms for the metabolism of every xenobiotic substrate are specific. The catabolism of a xenobiotic goes through a series of intermediate steps and lower intermediates (metabolites) appear in sequence. The structure of the metabolites can be similar to the parents due to kinship. The purposes of this study were to examine if the degradation pathways that were developed for a parent xenobiotic are effective to degrade the parent??s lower metabolites, and if the reverse is true.

Materials and methods

The xenobiotic substrates, 2,4-dichlorophenoxyacetic acid (2,4-D, the parent xenobiotic) and its metabolite 2,4-dichlorophenol (2,4-DCP), were independently subjected to acclimation and degradation tests by the biomasses of mixed-culture activated sludge and a pure culture of Arthrobacter sp.

Results

Activated sludge and Arthrobacter sp. that were acclimated to 2,4-D effectively degraded 2,4-D and the lower metabolites of 2,4-D, typically 2,4-DCP. During the degradation of 2,4-D, accumulations of the lower metabolites of 2,4-D were not found. The degradation pathways acquired from acclimation to 2,4-D are effective for all the metabolites of 2,4-D. However, pathways acquired from acclimation to 2,4-DCP are not effective in the degradation of the parent 2,4-D.

Conclusions

Microorganisms acclimated to 2,4-D evolve their degradation pathways by a scheme that is different from the scheme the microorganisms employ when they are acclimated to the metabolites of 2,4-D.  相似文献   

11.
Batch adsorption and desorption experiments were performed using thirteen agricultural soil samples and five pesticides. Experimental data indicated a gradient in pesticide adsorption on soil: trifluralin > 2,4-D > isoproturon> atrazine > bentazone. Atrazine, isoproturon and trifluralin adsorption were correlated to soil organic matter content (r2 = 0.7, 0.82, 0.79 respectively). Conversely, bentazone adsorption was governed by soil pH (r2 = 0.68) while insignificant effect has been shown in the case of 2,4-D. Multiple linear regressions were used to combine relationships between the various soil parameters and the Freundlich adsorption coefficient (K(f)) of each pesticide. Then desorption was assessed since it may reflect some of the interactions involved between the pesticides and the soil components. Adsorbed molecules were released into aqueous solution in the following order: bentazone > atrazine> isoproturon> 2,4-D > trifluralin. The occurrence of hysteresis did not allow an accurate interpretation of the pesticide desorption data because of the possible interplay of several processes.  相似文献   

12.
Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.  相似文献   

13.
Phenoxy herbicides like 2,4-dichlorophenoxyacetic acid (2,4-D) are widely used in agricultural practices. Although its half life in soil is 7-14d, the herbicide itself and its first metabolite 2,4-dichlorophenol (2,4-DCP) could remain in the soil for longer periods, as a consequence of its intensive use. Microcosms assays were conducted to study the influence of indigenous microflora and plants (alfalfa) on the dissipation of 2,4-D from soils of the Humid Pampa region, Argentina, with previous history of phenoxy herbicides application. Results showed that 2,4-D was rapidly degraded, and the permanence of 2,4-DCP in soil depended on the presence of plants and soil microorganisms. Regarding soil microbial community, the presence of 2,4-D degrading bacteria was detected even in basal conditions in this soil, possibly due to the adaptation of the microflora to the herbicide. There was an increment of two orders of magnitude in herbicide degraders after 15d from 2,4-D addition, both in planted and unplanted microcosms. Total heterotrophic bacteria numbers were about 1x10(8) CFUg(-1) dry soil and no significant differences were found between different treatments. Overall, the information provided by this work indicates that the soil under study has an important intrinsic degradation capacity, given by a microbial community adapted to the presence of phenoxy herbicides.  相似文献   

14.
The inhibitory effect of the herbicides 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 2,4-dichlorophenoxyacetic acid (2,4-D) in Saccharomyces cerevisiae growth is strongly dependent on medium pH (range 2.5-6.5). Consistent with the concept that the toxic form is the liposoluble undissociated form, at values close to their pK(a) (3.07 and 2.73, respectively) the toxicity is high, decreasing with the increase of external pH. In addition, the toxicity of identical concentrations of the undissociated acid form is pH independent, as observed with 2,4-dichlorophenol (2,4-DCP), an intermediate of 2,4-D degradation. Consequently, at pH values above 3.5 (approximately one unit higher than 2,4-D pK(a)), 2,4-DCP becomes more toxic than the original herbicide. A dose-dependent inhibition of growth kinetics and increased duration of growth latency is observed following sudden exposure of an unadapted yeast cell population to the presence of the herbicides. This contrasts with the effect of 2,4-DCP, which essentially affects growth kinetics. Experimental evidences suggest that the acid herbicides toxicity is not exclusively dependent on the liposolubility of the toxic form, as may essentially be the case of 2,4-DCP. An unadapted yeast cell population at the early stationary-phase of growth under nutrient limitation is significantly more resistant to short-term herbicide induced death than an exponential-phase population. Consequently, the duration of growth latency is reduced, as observed with the increase of the size of the herbicide stressed population. However, these physiological parameters have no significant effect either on growth kinetics, following growth resumption under herbicide stress, or on the growth curve of yeast cells previously adapted to the herbicides, indicating that their role is exerted at the level of cell adaptation.  相似文献   

15.
This paper reports the degradation of 2,4-DP (2-(2,4-dichlorophenoxy)-propionic acid) solutions of pH 3.0 by environmentally friendly electrochemical methods such as anodic oxidation, electro-Fenton and photoelectro-Fenton with a Pt or boron-doped diamond (BDD) anode. In the two latter techniques an O(2)-diffusion cathode was used and 1.0mM Fe(2+) was added to the solution to give hydroxyl radical (*OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the cathode. All treatments with BDD are viable to decontaminate acidic wastewaters containing 2,4-DP since they give complete mineralization, with loss of chloride ion, at high current due to the great production of oxidant *OH at the BDD surface favoring the destruction of final carboxylic acids. *OH formed from Fenton's reaction destroys more rapidly aromatic products, making the electro-Fenton and photoelectro-Fenton processes much more efficient than anodic oxidation. UVA light in photoelectro-Fenton with BDD has little effect on the degradation rate of pollutants. The comparative procedures with Pt lead to slower decontamination because of the lower oxidizing power of this anode. The effect of current on the degradation rate and efficiency of all methods is studied. The 2,4-DP decay always follows a pseudo-first-order kinetics. Chlorohydroquinone, chloro-p-benzoquinone and maleic, fumaric, malic, lactic, pyruvic, acetic, formic and oxalic acids are detected as products by chromatographic techniques. A general sequence accounting for by the reaction of all these intermediates with the different oxidizing agents is proposed.  相似文献   

16.
A fast, simple and inexpensive method has been developed for the analysis of phenoxy acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (MCPP), 2-(4-aryloxyphenoxy)propionic acid (Fluazifop) and 2-(4-aryloxyphenoxy)propionic acid (Haloxyfop) in carrots and apples by liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS). The compounds were analyzed by QuEChERS (quick, easy, cheap, effective, rugged, safe) methodology without cleanup.

The recoveries were performed at two spiked levels (0.05 and 0.5 mg/kg) for both matrices with six replicates for each level. The mean recoveries ranged from 70–92% for both apples and carrots. The precision of the method expressed as relative standard deviation (RSD%) was found to be in the range 3–15%. For all compounds, good linearity (r2 > 0.99) was obtained over the range of concentration from 0.05 μ g/mL to 0.5 μ g/mL, corresponding to the pesticide concentrations of 0.05 mg/kg and 0.5 mg/kg, respectively. The determination limits (LOQs) ranged from 0.01 ng/mL to 1.3 ng/mL in solvent, whereas, the LOQs calculated in matrix ranged from 0.05 ng/g to 21.0 ng/g for apples and from 0.06 ng/g to 10.2 ng/g for carrots. The developed methodology combines the advantages of both QuEChERS and LC/MS/MS producing a very rapid, sensitive and cheap method useful for the routine analytical laboratories.  相似文献   

17.
The application of municipal biosolid or liquid hog manure to agricultural soils under laboratory conditions at 20 degrees C influenced the fate of the herbicide 2,4-D [2,4-(dichlorophenoxy)acetic acid] in soil. When 2,4-D was added to soil at agronomic rates immediately after the addition of manure or biosolids to a coarse-textured soil, the percentage of 2,4-D mineralized at 100 days was about 47% for both treatments, compared to only 31% for control soils without amendments. The enhanced 2,4-D mineralization as a result of amendment addition was due to an increased heterotrophic microbial activity, with the greatest increases in soil respiration occurring for soils amended with biosolids. When additions of 2,4-D were delayed for one, two, or four weeks after the amendments were applied, the additions of amendments generally reduced 2,4-D mineralization in soil, particularly for manure, indicating that the effect of amendments on enhancing soil microbial activities diminished over time. In contrast, the mineralization of 2,4-D in control soils was less dependent on when 2,4-D was applied in relation to pre-incubations of soil for zero, one, two, or four weeks. The effect of manure on decreasing 2,4-D mineralization in specific soils was as large as the effect of soil texture on differences in 2,4-D mineralization across soils. Because manure was not found to impact 2,4-D sorption by soil, it is possible that 2,4-D mineralization decreased because 2,4-D transformation products were strongly sorbed onto organic carbon constituents in manure-amended soils and were therefore less accessible to microorganisms. Alternatively, microorganisms were less likely to metabolize the herbicide because they preferentially consumed the type of organic carbon in manure that is a weak sorbent for 2,4-D.  相似文献   

18.
Ninety strains of fungi from the collection of our mycology laboratory were tested in Galzy and Slonimski (GS) synthetic liquid medium for their ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its by-product, 2,4-dichlorophenol (2,4-DCP) at 100 mg l(-1), each. Evolution of the amounts of each chemical in the culture media was monitored by HPLC. After 5 days of cultivation, the best results were obtained with Aspergillus penicilloides and Mortierella isabellina for 2,4-D and with Chrysosporium pannorum and Mucor genevensis for 2,4-DCP. The data collected seemed to prove, on one hand, that the strains responses varied with the taxonomic groups and the chemicals tested, and, on the other hand, that 2,4-D was less accessible to fungal degradation than 2,4-DCP. In each case, kinetics studies with the two most efficient strains revealed that there was a lag phase of 1 day before the onset of 2,4-D degradation, whereas there was none during 2,4-DCP degradation. Moreover, 2,4-DCP was detected transiently during 2,4-D degradation. Finally, M. isabellina improved its degradation potential in Tartaric Acid (TA) medium relative to GS and Malt Extract (ME) media.  相似文献   

19.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

20.
Population of microorganisms able to degrade 2,4-D (2,4-dichlorophenoxyacetate) were estimated in 4 non-rhizosphere and 5 rhizosphere soils in Natal by a most probable number (MPN) method using 2,4-D-bromocresol purple media to show 2,4-D degradation with the formation of HC1. Confirmation of herbicide degradation in acid 2,4-D tubes was required by subculturing into fresh 2,4-D-and control indicator media. The MPN estimates of 2,4-D-degrading organisms per g of corresponding rhizosphere/control soils were 6100/212 with African clover (Trifolium africanum L.) soils, and 46400178, 1560001480 and 407006170 with sugarcane (Saccharum officinarum L.) soils. The high, stimulated populations of 2,4-D-degrading microorganisms in the sugarcane rhizospheres suggest the possibility of rapid degradaton in the rhizosphere as an additional mechanism for the protection of certain plants against soil-applied herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号