首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the past decade, a shift of focus onto greener alternatives to petroleum-based plastics has spurred the development of bio-based resins for plastic development. This has led to a positive marketing image for companies making the switch to resins from renewable resources. This shift of focus is further reinforced by corporations, which are committed to a reduction in their greenhouse gas emissions and product environmental footprints. Here, we present a perspective on the use of renewable materials in durable goods applications and the challenges and advantages associated with the use of renewable materials. Replacement of petroleum-based acoustic foam with that derived from sustainable resources and qualification of thermoplastic polylactic acid blends for enclosure covers has been demonstrated. The technical details of the materials development required for use in durable goods, and their characterization is also discussed.  相似文献   

2.
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of “Green Chemistry” and “Green Engineering”, “Green Toxicology” aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.  相似文献   

3.
A modern challenge for conservation biology is to assess the consequences of policies that adhere to assumptions of stationarity (e.g., historic norms) in an era of global environmental change. Such policies may result in unexpected and surprising levels of mitigation given future climate‐change trajectories, especially as agriculture looks to protected areas to buffer against production losses during periods of environmental extremes. We assessed the potential impact of climate‐change scenarios on the rates at which grasslands enrolled in the Conservation Reserve Program (CRP) are authorized for emergency harvesting (i.e., biomass removal) for agricultural use, which can occur when precipitation for the previous 4 months is below 40% of the normal or historical mean precipitation for that 4‐month period. We developed and analyzed scenarios under the condition that policy will continue to operate under assumptions of stationarity, thereby authorizing emergency biomass harvesting solely as a function of precipitation departure from historic norms. Model projections showed the historical likelihood of authorizing emergency biomass harvesting in any given year in the northern Great Plains was 33.28% based on long‐term weather records. Emergency biomass harvesting became the norm (>50% of years) in the scenario that reflected continued increases in emissions and a decrease in growing‐season precipitation, and areas in the Great Plains with higher historical mean annual rainfall were disproportionately affected and were subject to a greater increase in emergency biomass removal. Emergency biomass harvesting decreased only in the scenario with rapid reductions in emissions. Our scenario‐impact analysis indicated that biomass from lands enrolled in the CRP would be used primarily as a buffer for agriculture in an era of climatic change unless policy guidelines are adapted or climate‐change projections significantly depart from the current consensus.  相似文献   

4.
SUMMARY

The sun is the ultimate energy source of the Earth. This energy is a resource if utilised, a menace if not. Plants collect and transform radiant energy to chemical energy through photosynthesis. Part of the converted energy is used for their maintenance, while the remainder is stored as biomass. The living biomass plays a vital role in ecological processes and relationships, and provides essential services: soil and water conservation, a buffer against the adverse effects of rain, wind and sun, aesthetics, recreation, and environmental cleaning. Harvested biomass provides safe energy and materials for production of valuable products through industrial processes and household-based technologies. In the absence of vegetation, solar radiation dries soil moisture and disrupts natural processes essential for healthy ecosystem sustenance. Light-use efficiency of plants is positively correlated with rate of growth and bamboos are among the fastest growing perennial plants. This paper is not a thorough review of radiation or bamboo. The following issues are highlighted: (1) The flow of sunlight to the Earth and its usefulness as a resource if used properly and its tendency to become a nuisance if not. (2) The virtues of bamboos as light interceptors and providers of goods and services, better than many tree species. (3) The endowment of Ethiopia with large natural bamboo resources, the availability of denuded land for expansion, and the urgency for proper management, expansion and utilisation for faster socio-economic development and environmental improvement.  相似文献   

5.
This paper presents a Life Cycle Assessment of a hemp fibre reinforced component for automotive parts. Its aim is to identify the optimisation strategies within the product system and also provide decision support for automotive engineers for or against the employment of renewable raw materials within the production process. The investigated life cycle contains the agricultural cultivation of the fibre plant, the method of harvesting and the processing of the crop. The analysis includes the further processing of the fibre, i.e. the manufacturing of the fibre composite matrix, on which the production of form press components for the automotive industry is based. Manufacturing the required preproducts is also taken into account. The differences of energy demand (CED) and emission amount during the use phase of a passenger car and different disposal options for the end of the life cycle (deposition or incineration) are assessed as well. It is shown that the natural fibre composite is ecologically preferable to the injection moulded reference as the results of the Eco-indicator 95 method show. Optimisation is necessary for the epoxy-resin-hardener system, although the cultivation of fibre plants is ecologically an insignificant process regarding the system boundaries. The weight difference and resulting energy savings during the use phase of a car reveal further advantages of a fibre panel.  相似文献   

6.
The environmental impact of consumption and production is diverse and wide-reaching: air, water and ground pollutants are emitted during different phases of a life cycle, natural resources are overexploited and ecosystems are degraded. Changing consumption patterns in Asia forecast major impacts from increased demand for electric and electronic goods, cars and processed and protein-rich food, as well as buildings. While some countries have adopted policy at a strategic level to promote sustainable consumption and production, most countries, in particular developing countries in the Asia-Pacific region, do not have a comprehensive policy on sustainable consumption and production but would have much to gain from building on this new approach. The aim of this paper is to elaborate on current theory and practice in the area of sustainable production and consumption focusing on sustainable urban development. The paper will: 1) analyse current policy thinking in the field of regional sustainable consumption and production; 2) identify issues for regional policy development in the same fields; and 3) propose regional public policy related to sustainable consumption and production patterns, such as improved energy efficiency and use of alternative energy.  相似文献   

7.
To improve material efficiency, industrial structure optimization becomes a focal point in Chinese industrial and environmental policies. It is crucial to cluster economic sectors and determine their priority for industrial and environmental policy implementation. Integrating a set of criteria, a hybrid input-output model and the hierarchical cluster analysis, this study clusters China’s economic sectors and determines their priority on a life cycle basis. China’s economic sectors are clustered into three clusters. Industrial structure changes (industrial policy) should encourage the development of sectors in cluster 1 and limit the development of sectors in cluster 2. Technology development and materials recycling (two environmental policies) should mainly focus on sectors in clusters 1 and 2. Future industrial policies in China should limit the development of two sectors named Manufacture of metal products and Extraction of petroleum and natural gas. Instead of limiting some industries by command-and-control, the best policy option is to remedy environmental standards and law enforcement. Enterprises belonging to the identified key sectors from the viewpoint of direct production impacts should be concerned to achieve enterprise sustainability. To achieve sustainable production chains, the identified key sectors from the viewpoint of accumulative production impacts should be concerned. For sustainable consumption, the identified key sectors from the viewpoint of consumption impacts should be concerned to transform consumption styles. Most of environmental pressure can be alleviated not only by technical improvements and material recycling, but also by the development of economic sectors in cluster 1.  相似文献   

8.
Efficient and sustainable management of complex forest ecosystems   总被引:1,自引:0,他引:1  
A large range of models has been developed for the analysis of optimal forest management strategies, with the well-known Faustmann models dating back to the mid-19th century. To date, however, there has been relatively little attention for the implications of complex ecosystem dynamics for optimal forest management. This paper examines the implications of irreversible ecosystem responses for efficient and sustainable forest management. The paper is built around two forest models that comprise two ecosystem components, forest cover and topsoil, the interactions between these components, and the supply of the ecosystem services ‘wood’ and ‘erosion control’. The first model represents a forest that responds in a reversible way to overharvesting. In the second model, an additional ecological process has been included and the ecosystem irreversibly collapses below certain thresholds in forest cover and topsoil depth. The paper presents a general model, and demonstrates the implications of pursuing efficient as well as sustainable forest management for the two forest ecosystems. Both fixed and variable harvesting cycles are examined. Efficient and sustainable harvesting cycles are compared, and it is shown that irreversible ecosystem behaviour reduces the possibilities to reconcile efficient and sustainable forest management through a variable harvesting cycle.  相似文献   

9.
Agricultural practices such as harvesting of crops cause the pathogens to disseminate in abundance and may cause diseases, like skin and respiratory allergies in an epidemic form. Also the farm workers were likely to be exposed repeatedly to high doses of fungal spore allergens from crop harvesting operations. At Srikakulam, located in North Coastal Andhra Pradesh, India, the major crops grown include rice and sugarcane. As part of a major study on the airspora of Srikakulam the effect of harvesting of these two crops on aerial spore concentrations was studied through rotorod trappings. The results showed an enormous increase in the spore load not only of the fungi pathogenic to the crop but also saprophytic fungi while the crop was harvested. The increase in the pathogenic fungal spores was large as evidenced by the increase of the rice crop pathogens as Trichoconis padwickii, Ustilaginoidea virens, Cochilobolus oryzae etc.  相似文献   

10.

The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of the most important biorefinery platforms. Furthermore, microalgae's ability to alter their metabolism in response to environmental stresses to produce relatively high levels of high-value compounds makes them a promising alternative to fossil fuels. As a result, microalgae can significantly contribute to long-term solutions to critical global issues such as the energy crisis and climate change. The environmental benefits of algal biofuel have been demonstrated by significant reductions in carbon dioxide, nitrogen oxide, and sulfur oxide emissions. Microalgae-derived biomass has the potential to generate a wide range of commercially important high-value compounds, novel materials, and feedstock for a variety of industries, including cosmetics, food, and feed. This review evaluates the potential of using microalgal biomass to produce a variety of bioenergy carriers, including biodiesel from stored lipids, alcohols from reserved carbohydrate fermentation, and hydrogen, syngas, methane, biochar and bio-oils via anaerobic digestion, pyrolysis, and gasification. Furthermore, the potential use of microalgal biomass in carbon sequestration routes as an atmospheric carbon removal approach is being evaluated. The cost of algal biofuel production is primarily determined by culturing (77%), harvesting (12%), and lipid extraction (7.9%). As a result, the choice of microalgal species and cultivation mode (autotrophic, heterotrophic, and mixotrophic) are important factors in controlling biomass and bioenergy production, as well as fuel properties. The simultaneous production of microalgal biomass in agricultural, municipal, or industrial wastewater is a low-cost option that could significantly reduce economic and environmental costs while also providing a valuable remediation service. Microalgae have also been proposed as a viable candidate for carbon dioxide capture from the atmosphere or an industrial point source. Microalgae can sequester 1.3 kg of carbon dioxide to produce 1 kg of biomass. Using potent microalgal strains in efficient design bioreactors for carbon dioxide sequestration is thus a challenge. Microalgae can theoretically use up to 9% of light energy to capture and convert 513 tons of carbon dioxide into 280 tons of dry biomass per hectare per year in open and closed cultures. Using an integrated microalgal bio-refinery to recover high-value-added products could reduce waste and create efficient biomass processing into bioenergy. To design an efficient atmospheric carbon removal system, algal biomass cultivation should be coupled with thermochemical technologies, such as pyrolysis.

  相似文献   

11.
The giant kelp Macrocystis pyrifera is one of the largest and fastest growing seaweeds and is dominant over large areas of the west coast of North America. A model of its growth has been developed which describes plant biomass and production over the course of a year as a function of environmental parameters which affect the light flux. Such parameters include water clarity, spacing between plants, bottom depth, latitude, harvesting activity, and photosynthetic response (P max and I k ). Model results for a standard set of conditions (latitude 33°N, 3 m plant spacing, water absorbance of 0.115 m-1 and 12 m depth) yield a peak daily gross production of almost 6 g C m-2 d-1, peak daily net production of almost 3 g C m-2 d-1, and a peak specific growth rate of about 0.022 d-1. Annual gross production for this case is 1 567 g C m-2 yr-1; annual net production is 537 g C m-2 yr-1. These values are comparable to those from field measurements. Size and timing of biomass and production peaks are affected by changes in the parameters describing the light field, with peaks usually occurring later in the year for more adverse circumstances. Inhigher latitudes, the seasonal variation is so extreme that the plant could not last the year at 53° N in 12 m of water, although it is able to survive the year in shallower water. Harvesting has severe effects on biomass and production. Model results suggest that light limitation is a very important constraint on kelp growth that should not be overlooked. This implies that differences in parameters describing two environments must be considered when comparing results obtained at different locales.  相似文献   

12.
A generic age-structured model is developed to derive analytical results on optimal harvesting. Given two age classes, knife-edge selectivity, and no stock-dependent harvesting cost, the steady state is a unique saddle point. Adding harvesting cost does not alter the uniqueness, given that the utility is linear. Under specific conditions such as nonselective gear, optimal harvesting is proved to be a stationary cycle that represents pulse fishing. Optimal steady states are different if age-structured information is ignored and optimization is based on traditional biomass variables. This implies that the existence of optimal sustainable harvesting depends on age-structured information. Given a specific set of conditions such as low interest rate and knife-edge selectivity, optimal harvesting converges toward a unique saddle point independently of the number of age classes.  相似文献   

13.
Economics of harvesting age-structured fish populations   总被引:2,自引:0,他引:2  
A generic age-structured model is developed to derive analytical results on optimal harvesting. Given two age classes, knife-edge selectivity, and no stock-dependent harvesting cost, the steady state is a unique saddle point. Adding harvesting cost does not alter the uniqueness, given that the utility is linear. Under specific conditions such as nonselective gear, optimal harvesting is proved to be a stationary cycle that represents pulse fishing. Optimal steady states are different if age-structured information is ignored and optimization is based on traditional biomass variables. This implies that the existence of optimal sustainable harvesting depends on age-structured information. Given a specific set of conditions such as low interest rate and knife-edge selectivity, optimal harvesting converges toward a unique saddle point independently of the number of age classes.  相似文献   

14.
This article proposes to use nutrient-orientated environmental efficiency (EE) measures to construct a nutrient total factor productivity index (NTFP). Since nutrient-orientated EE measures are consistent with the materials balance principle, NTFP index is superior to other existing TFP indexes. An empirical study on the environmental performance of an agricultural sector in 30 OECD countries from 1990 to 2003 yielded several important findings. First, these countries should be able to produce current outputs with at least 50% less aggregate eutrophying power, implying that they should have been able to substantially reduce the potential for eutrophication. Second, traditional TFP has grown by 1.6% per annum due to technical progress; however, there are lags in the responses of several countries to this technical progress. Third, environmental TFP has grown at a slower rate than traditional TFP growth due to reductions in nutrient-orientated allocative efficiency. Finally, changes in input combinations could have significantly improved environmental efficiency and productivity. These findings favor policy interventions and faster technological transfer to improve environmental performance.  相似文献   

15.

Climate change issues are calling for advanced methods to produce materials and fuels in a carbon–neutral and circular way. For instance, biomass pyrolysis has been intensely investigated during the last years. Here we review the pyrolysis of algal and lignocellulosic biomass with focus on pyrolysis products and mechanisms, oil upgrading, combining pyrolysis and anaerobic digestion, economy, and life cycle assessment. Products include oil, gas, and biochar. Upgrading techniques comprise hot vapor filtration, solvent addition, emulsification, esterification and transesterification, hydrotreatment, steam reforming, and the use of supercritical fluids. We examined the economic viability in terms of profitability, internal rate of return, return on investment, carbon removal service, product pricing, and net present value. We also reviewed 20 recent studies of life cycle assessment. We found that the pyrolysis method highly influenced product yield, ranging from 9.07 to 40.59% for oil, from 10.1 to 41.25% for biochar, and from 11.93 to 28.16% for syngas. Feedstock type, pyrolytic temperature, heating rate, and reaction retention time were the main factors controlling the distribution of pyrolysis products. Pyrolysis mechanisms include bond breaking, cracking, polymerization and re-polymerization, and fragmentation. Biochar from residual forestry could sequester 2.74 tons of carbon dioxide equivalent per ton biochar when applied to the soil and has thus the potential to remove 0.2–2.75 gigatons of atmospheric carbon dioxide annually. The generation of biochar and bio-oil from the pyrolysis process is estimated to be economically feasible.

  相似文献   

16.
This article proposes to use nutrient-orientated environmental efficiency (EE) measures to construct a nutrient total factor productivity index (NTFP). Since nutrient-orientated EE measures are consistent with the materials balance principle, NTFP index is superior to other existing TFP indexes. An empirical study on the environmental performance of an agricultural sector in 30 OECD countries from 1990 to 2003 yielded several important findings. First, these countries should be able to produce current outputs with at least 50% less aggregate eutrophying power, implying that they should have been able to substantially reduce the potential for eutrophication. Second, traditional TFP has grown by 1.6% per annum due to technical progress; however, there are lags in the responses of several countries to this technical progress. Third, environmental TFP has grown at a slower rate than traditional TFP growth due to reductions in nutrient-orientated allocative efficiency. Finally, changes in input combinations could have significantly improved environmental efficiency and productivity. These findings favor policy interventions and faster technological transfer to improve environmental performance.  相似文献   

17.
The environmental burdens of Chinese copper production have been identified and quantified in the context of typical technologies, materials supplies and environmental emissions by a life cycle approach. Primary and secondary copper production using copper ores and scraps, respectively, were analyzed in detail. The flash and bath smelting approaches and the recycling of copper scraps were selected as representative copper production processes. A quantitative analysis was also conducted to assess the influence of material transport distance in copper production. Life cycle assessment (LCA) results showed that resources depletion and human health contribute significantly to environmental burdens in Chinese copper production. In addition, the secondary copper production has dramatically lower environmental burdens than the primary production. There is no obvious distinction in overall environmental burdens in primary copper production by flash or bath smelting approach. However, resources depletion is lower and the damage to human health is higher for flash smelting approach. Ecosystem quality damage is slight for both approaches. Environ- mental burdens from the mining stage contribute most in all life cycle stages in primary copper production. In secondary copper production, the electrolytic refining stage dominates. Based on the life cycle assessment results, some suggestions for improving environmental performance were proposed to meet the sustainable development of Chinese copper industry.  相似文献   

18.
SUMMARY

A rich diversity of traditional crops occurs generally in the Himalaya and more particularly in Central Himalaya. Over forty species of food grains are grown in traditional agroecosystems of Central Himalaya, which have been managed by the local farming communities since time immemorial. These traditional crop varieties have evolved over centuries and are well adapted to the particular area. A number of edaphic, topographic and climatic factors associated with different selection pressures over centuries of cultivation resulted in immense variations in the crop species.

The grain and by-product yield of the majority of the traditional crops cultivated across an altitudinal gradient were worked out and compared with common food crops (paddy, wheat, mustard) at two points in time (1970-74, 1990–94) and it was found that almost all the traditional crops had slightly higher yields during 1970–74 than between 1990–94. However, common food crops grown during the Kharif season had higher yields during 1990–94 whereas, Rabi season crops exhibited higher yield during 1970–74. The yield of rainfed paddy remained static over the years across the altitudinal gradient. Among the traditional crops cultivated during the Kharif and Rabi seasons in mixed and pure forms at different altitudes were Macrotyloma uniforum (at higher altitude), Parilla frutescens and Vigna mungo (at middle altitude) and Panicum miliaceum (at lower altitude) which were found to be eco-energetically efficient. Avena sativa (oat) and mixed cropping of Fagopyrum esculentum and potato had higher energy efficiency ratios whereas the latter also exhibited a higher monetary output/input ratio. Crops like paddy and wheat with mustard, grown in irrigated land were found to be more eco-energetically efficient than the same crops grown in the rainfed land. In general, traditional crops possess higher nutritive value than the common food crops. The contribution of traditional crops to the local diet (kg/capita/year) and their energy and protein equivalents were higher during both time periods. It was observed that while exporting these traditional crops, the locals of the region are highly exploited by middlemen. Despite having huge potential, traditional crop diversity of this region has been reduced to a great extent during the last two decades. Besides, the area under cultivation with these crops has been declining rapidly. However, many of these crops possess immense potential to meet the growing food demand and ensure food security of an increasing population. Therefore, a comprehensive programme of conservation through various means and improvement of agronomic yield in their natural habitats is urgently needed.  相似文献   

19.
采用固定样方法和定位观察法连续测定了2003~2007年间卧龙自然保护区大熊猫野化培训圈内及其附近区域的拐棍竹无性系种群数量和生长发育特性等参数,运用收获法与非破坏性重量估测法建立了不同龄级和残桩的竹子种群和分株生物量估测模型,进而利用最佳模型计算并评估了野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群生物量和植株个体生物量的影响.结果表明:在环境条件、种群密度、生长发育特征和种群生物量等基本相似的基础上,大熊猫采食和人为砍伐不仅降低实验期间的竹子生物生产力,而且影响到后期阶段实验种群的恢复与发展.大熊猫采食样方中的竹子种群生物量虽然较对照样方低,就竹笋生物量而言,约为对照的57.79%,这与野化培训圈的面积较小、竹种单一而使采食比重(67.07%)较大有关,但其各龄级植株个体生物量均能达到大熊猫的取食利用标准(仅2004年生竹除外),具有持续供给大熊猫食物资源的潜力;而人为砍伐措施与大熊猫采食相比,影响效果极为强烈,它严重降低了拐棍竹无性系的种群生物量,尤其是竹笋重量更是如此,仅为对照样方的14.69%,且植株个体鲜重远低于大熊猫的觅食条件.因此,竹笋和无性系植株的生物量是大熊猫采食标准的主要因素.  相似文献   

20.
Canopy-forming plants and algae commonly contribute to spatial variation in habitat complexity for associated organisms and thereby create a biotic patchiness of communities. In this study, we tested for interaction effects between biotic habitat complexity and resource availability on net biomass production and species diversity of understory macroalgae by factorial field manipulations of light, nutrients, and algal canopy cover in a subtidal rocky-shore community. Presence of algal canopy cover and/or artificial shadings limited net biomass production and facilitated species diversity. Artificial shadings reduced light to levels similar to those under canopy cover, and net biomass production was significantly and positively correlated to light availability. Considering the comparable and dependent experimental effects from shadings and canopy cover, the results strongly suggest that canopy cover controlled net biomass production and species diversity by limiting light and thereby limiting resource availability for community production. Canopy cover also controlled experimental nutrient effects by preventing a significant increase in net biomass production from nutrient enrichment recorded in ambient light (no shading). Changes in species diversity were mediated by changes in species dominance patterns and species evenness, where canopy cover and shadings facilitated slow-growing crust-forming species and suppressed spatial dominance by Fucus vesiculosus, which was the main contributor to net production of algal biomass. The demonstrated impacts of biotic habitat complexity on biomass production and local diversity contribute significantly to understanding the importance of functionally important species and biodiversity for ecosystem processes. In particular, this study demonstrates how loss of a dominant species and decreased habitat complexity change the response of the remaining assembly to resource loading. This is of potential significance for marine conservation since resource loading often promotes low habitat complexity and canopy species are among the first groups lost in degraded aquatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号