首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   

2.
Human activities are accelerating global biodiversity change and have resulted in severely threatened ecosystem services. A large proportion of terrestrial biodiversity is harbored by soil, but soil biodiversity has been omitted from many global biodiversity assessments and conservation actions, and understanding of global patterns of soil biodiversity remains limited. In particular, the extent to which hotspots and coldspots of aboveground and soil biodiversity overlap is not clear. We examined global patterns of these overlaps by mapping indices of aboveground (mammals, birds, amphibians, vascular plants) and soil (bacteria, fungi, macrofauna) biodiversity that we created using previously published data on species richness. Areas of mismatch between aboveground and soil biodiversity covered 27% of Earth's terrestrial surface. The temperate broadleaf and mixed forests biome had the highest proportion of grid cells with high aboveground biodiversity but low soil biodiversity, whereas the boreal and tundra biomes had intermediate soil biodiversity but low aboveground biodiversity. While more data on soil biodiversity are needed, both to cover geographic gaps and to include additional taxa, our results suggest that protecting aboveground biodiversity may not sufficiently reduce threats to soil biodiversity. Given the functional importance of soil biodiversity and the role of soils in human well-being, soil biodiversity should be considered further in policy agendas and conservation actions by adapting management practices to sustain soil biodiversity and considering soil biodiversity when designing protected areas.  相似文献   

3.
Abstract:  As primary forest is cleared, pastures and secondary forest occupy an increasing space in the Amazonian landscape. We evaluated the effect of forest clearing on a soil macrofauna (invertebrate) community in a smallholder farming system of southeastern Amazonia. We sampled the soil macrofauna in 22 plots of forest, upland rice fields, pastures, and fallows of different ages. In total, we collected 10,728 invertebrates. In cleared plots the species richness per plot of the soil macrofauna fell from 76 to 30 species per plot immediately after forest clearance, and the composition of the new community was different. Ants, termites, and spiders were most affected by the disturbance. In plots deforested several years before, the effect of forest clearance was highly dependent on the type of land use (pasture or fallow). In fallows, the community was similar to the initial state. The species richness per plot in old fallows rose to 66, and the composition was closer to the primary forests than to the other types of land use. On the contrary, in the pastures the species richness per plot remained low at 47. In fallows, all the groups showed a richness close to that in primary forest, whereas in the forest only the richness of earthworms and Coleoptera recovered. Our results show that forest clearing constitutes a major disturbance for the soil macrofauna and that the recovery potential of the soil macrofauna after 6 or 7 years is much higher in fallows than in pastures. Thus, fallows may play a crucial role in the conservation of soil macrofauna.  相似文献   

4.
Deforestation in Brazilian Amazonia: History, Rates, and Consequences   总被引:17,自引:0,他引:17  
Abstract:  Brazil's Amazon forest remained largely intact until the "modern" era of deforestation began with the inauguration of the Transamazon Highway in 1970. Amazonian deforestation rates have trended upward since 1991, with clearing proceeding at a variable but rapid pace. Although Amazonian forests are cut for various reasons, cattle ranching predominates. The large and medium-sized ranches account for about 70% of clearing activity. Profit from beef cattle is only one of the income sources that make deforestation profitable. Forest degradation results from logging, ground fires (facilitated by logging), and the effects of fragmentation and edge formation. Degradation contributes to forest loss. The impacts of deforestation include loss of biodiversity, reduced water cycling (and rainfall), and contributions to global warming. Strategies to slow deforestation include repression through licensing procedures, monitoring, and fines. The severity of penalties for deforestation needs to be sufficient to deter illegal clearing but not so great as to be unenforceable. Policy reform is also needed to address root causes of deforestation, including the role of clearing in establishing land claims.  相似文献   

5.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   

6.
The forests of southeastern Alaska remain largely intact and contain a substantial proportion of Earth's remaining old‐growth temperate rainforest. Nonetheless, industrial‐scale logging has occurred since the 1950s within a relatively narrow range of forest types that has never been quantified at a regional scale. We analyzed historical patterns of logging from 1954 through 2004 and compared the relative rates of change among forest types, landform associations, and biogeographic provinces. We found a consistent pattern of disproportionate logging at multiple scales, including large‐tree stands and landscapes with contiguous productive old‐growth forests. The highest rates of change were among landform associations and biogeographic provinces that originally contained the largest concentrations of productive old growth (i.e., timber volume >46.6 m3/ha). Although only 11.9% of productive old‐growth forests have been logged region wide, large‐tree stands have been reduced by at least 28.1%, karst forests by 37%, and landscapes with the highest volume of contiguous old growth by 66.5%. Within some island biogeographic provinces, loss of rare forest types may place local viability of species dependent on old growth at risk of extirpation. Examination of historical patterns of change among ecological forest types can facilitate planning for conservation of biodiversity and sustainable use of forest resources. El Uso de Patrones Históricos de Tala para Identificar Ecosistemas Talados Desproporcionadamente en Bosques Lluviosos Templados del Sureste de Alaska Albert & Schoen 11‐839  相似文献   

7.
Tropical forest ecosystems are threatened by habitat conversion and other anthropogenic actions. Timber production forests can augment the conservation value of primary forest reserves, but studies of logging effects often yield contradictory findings and thus inhibit efforts to develop clear conservation strategies. We hypothesized that much of this variability reflects a common methodological flaw, simple pseudoreplication, that confounds logging effects with preexisting spatial variation. We reviewed recent studies of the effects of logging on biodiversity in tropical forests (n = 77) and found that 68% were definitively pseudoreplicated while only 7% were definitively free of pseudoreplication. The remaining proportion could not be clearly categorized. In addition, we collected compositional data on 7 taxa in 24 primary forest research plots and systematically analyzed subsets of these plots to calculate the probability that a pseudoreplicated comparison would incorrectly identify a treatment effect. Rates of false inference (i.e., the spurious detection of a treatment effect) were >0.5 for 2 taxa, 0.3–0.5 for 2 taxa, and <0.3 for 3 taxa. Our findings demonstrate that tropical conservation strategies are being informed by a body of literature that is rife with unwarranted inferences. Addressing pseudoreplication is essential for accurately assessing biodiversity in logged forests, identifying the relative merits of specific management practices and landscape configurations, and effectively balancing conservation with timber production in tropical forests. Pseudoreplicación en Bosques Tropicales y Efectos Resultantes Sobre la Conservación de Biodiversidad  相似文献   

8.
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.  相似文献   

9.
Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations’ resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.  相似文献   

10.
There is a lack of quantitative information on the effectiveness of selective‐logging practices in ameliorating effects of logging on faunal communities. We conducted a large‐scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest‐dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance‐tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance‐tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low‐intensity logging (≤3 trees/ha) a minimum 20‐year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian assemblages. Recuperación de Ensambles de Anfibios en Dos Etapas Después de la Tala Selectiva de Bosques Tropicales  相似文献   

11.
Abstract: The Amazon basin is experiencing rapid forest loss and fragmentation. Fragmented forests are more prone than intact forests to periodic damage from El Niño–Southern Oscillation ( ENSO) droughts, which cause elevated tree mortality, increased litterfall, shifts in plant phenology, and other ecological changes, especially near forest edges. Moreover, positive feedbacks among forest loss, fragmentation, fire, and regional climate change appear increasingly likely. Deforestation reduces plant evapotranspiration, which in turn constrains regional rainfall, increasing the vulnerability of forests to fire. Forest fragments are especially vulnerable because they have dry, fire-prone edges, are logged frequently, and often are adjoined by cattle pastures, which are burned regularly. The net result is that there may be a critical "deforestation threshold" above which Amazonian rainforests can no longer be sustained, particularly in relatively seasonal areas of the basin. Global warming could exacerbate this problem if it promotes drier climates or stronger ENSO droughts. Synergisms among many simultaneous environmental changes are posing unprecedented threats to Amazonian forests.  相似文献   

12.
Megadams are among the key modern drivers of habitat and biodiversity loss in emerging economies. The Balbina Hydroelectric Dam of Central Brazilian Amazonia inundated 312,900 ha of primary forests and created approximately 3500 variable-sized islands that still harbor vertebrate populations after nearly 3 decades after isolation. We estimated the species richness, abundance, biomass, composition, and group size of medium- to large-bodied forest vertebrates in response to patch, landscape, and habitat-quality metrics across 37 islands and 3 continuous forest sites throughout the Balbina archipelago. We conducted 1168 km of diurnal censuses and had 12,420 camera-trapping days along 81 transects with 207 camera stations. We determined the number of individuals (or groups) detected per 10 km walked and the number of independent photographs per 10 camera-trapping days, respectively, for each species. We recorded 34 species, and patch area was the most significant predictor of vertebrate population relative abundance and aggregate biomass. The maximum group size of several group-living species was consistently larger on large islands and in continuous patches than on small islands. Most vertebrate populations were extirpated after inundation. Remaining populations are unlikely to survive further ecological disruptions. If all vertebrate species were once widely distributed before inundation, we estimated that approximately 75% of all individual vertebrates were lost from all 3546 islands and 7.4% of the animals in all persisting insular populations are highly likely to be extirpated. Our results demonstrate that population abundance estimates should be factored into predictions of community disassembly on small islands to robustly predict biodiversity outcomes. Given the rapidly escalating hydropower infrastructure projects in developing counties, we suggest that faunal abundance and biomass estimates be considered in environmental impact assessments and large strictly protected reserves be established to minimize detrimental effects of dams on biodiversity. Conserving large tracts of continuous forests represents the most critical conservation measure to ensure that animal populations can persist at natural densities in Amazonian forests.  相似文献   

13.
Smallholder agriculture is the main driver of deforestation in the western Amazon, where terrestrial biodiversity reaches its global maximum. Understanding the biodiversity value of the resulting mosaics of cultivated and secondary forest is therefore crucial for conservation planning. However, Amazonian communities are organized across multiple forest types that support distinct species assemblages, and little is known about smallholder impacts across the range of forest types that are essential for sustaining biodiversity. We addressed this issue with a large-scale field inventory of birds (point counts) and trees (transects) in primary forest and smallholder agriculture in northern Peru across 3 forest types that are key for Amazonian biodiversity. For birds smallholder agriculture supported species richness comparable to primary forest within each forest type, but biotic homogenization across forest types resulted in substantial losses of biodiversity overall. These overall losses are invisible to studies that focus solely on upland (terra firma) forest. For trees biodiversity losses in upland forests dominated the signal across all habitats combined and homogenization across habitats did not exacerbate biodiversity loss. Proximity to forest strongly predicted the persistence of forest-associated bird and tree species in the smallholder mosaic, and because intact forest is ubiquitous in our study area, our results probably represent a best-case scenario for biodiversity in Amazonian agriculture. Land-use planning inside and outside protected areas should recognize that tropical smallholder agriculture has pervasive biodiversity impacts that are not apparent in typical studies that cover a single forest type. The full range of forest types must be surveyed to accurately assess biodiversity losses, and primary forests must be protected to prevent landscape-scale biodiversity loss.  相似文献   

14.
Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9–51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.  相似文献   

15.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

16.
Abstract: In recent decades the rate and geographic extent of land‐use and land‐cover change has increased throughout the world's humid tropical forests. The pan‐tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long‐term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large‐scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small‐scale deforestation, low‐intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.  相似文献   

17.
A key driver of rain forest degradation is rampant commercial logging. Reduced-impact logging (RIL) techniques dramatically reduce residual damage to vegetation and soils, and they enhance the long-term economic viability of timber operations when compared to conventionally managed logging enterprises. Consequently, the application of RIL is increasing across the tropics, yet our knowledge of the potential for RIL also to reduce the negative impacts of logging on biodiversity is minimal. We compare the impacts of RIL on birds, leaf-litter ants, and dung beetles during a second logging rotation in Sabah, Borneo, with the impacts of conventional logging (CL) as well as with primary (unlogged) forest. Our study took place 1-8 years after the cessation of logging. The species richness and composition of RIL vs. CL forests were very similar for each taxonomic group. Both RIL and CL differed significantly from unlogged forests in terms of bird and ant species composition (although both retained a large number of the species found in unlogged forests), whereas the composition of dung beetle communities did not differ significantly among forest types. Our results show little difference in biodiversity between RIL and CL over the short-term. However, biodiversity benefits from RIL may accrue over longer time periods after the cessation of logging. We highlight a severe lack of studies investigating this possibility. Moreover, if RIL increases the economic value of selectively logged forests (e.g., via REDD+, a United Nations program: Reducing Emissions from Deforestation and Forest Degradation in Developing Countries), it could help prevent them from being converted to agricultural plantations, which results in a tremendous loss of biodiversity.  相似文献   

18.
Forest degradation is arguably the greatest threat to biodiversity, ecosystem services, and rural livelihoods. Therefore, increasing understanding of how organisms respond to degradation is essential for management and conservation planning. We were motivated by the need for rapid and practical analytical tools to assess the influence of management and degradation on biodiversity and system state in areas subject to rapid environmental change. We compared bird community composition and size in managed (ejido, i.e., communally owned lands) and unmanaged (national park) forests in the Sierra Tarahumara region, Mexico, using multispecies occupancy models and data from a 2‐year breeding bird survey. Unmanaged sites had on average higher species occupancy and richness than managed sites. Most species were present in low numbers as indicated by lower values of detection and occupancy associated with logging‐induced degradation. Less than 10% of species had occupancy probabilities >0.5, and degradation had no positive effects on occupancy. The estimated metacommunity size of 125 exceeded previous estimates for the region, and sites with mature trees and uneven‐aged forest stand characteristics contained the highest species richness. Higher estimation uncertainty and decreases in richness and occupancy for all species, including habitat generalists, were associated with degraded young, even‐aged stands. Our findings show that multispecies occupancy methods provide tractable measures of biodiversity and system state and valuable decision support for landholders and managers. These techniques can be used to rapidly address gaps in biodiversity information, threats to biodiversity, and vulnerabilities of species of interest on a landscape level, even in degraded or fast‐changing environments. Moreover, such tools may be particularly relevant in the assessment of species richness and distribution in a wide array of habitats. Uso de Modelos de Ocupación para Múltiples Especies para Evaluar la Respuesta de las Comunidades de Aves a la Degradación de Bosques Asociada con la Tala  相似文献   

19.
Abstract: Antarctic ecosystems are often considered nearly pristine because levels of anthropogenic disturbance are extremely low there. Nevertheless, over recent decades there has been a rapid increase in the number of people, researchers and tourists, visiting Antarctica. We evaluated, over 10 years, the direct impact of foot traffic on the abundance of soil animals and soil properties in Taylor Valley within the McMurdo Dry Valleys region of Antarctica. We compared soils from minimally disturbed areas with soils from nearby paths that received intermediate and high levels of human foot traffic (i.e., up to approximately 80 passes per year). The nematodes Scottnema lindsayae and Eudorylaimus sp. were the most commonly found animal species, whereas rotifers and tardigrades were found only occasionally. On the highly trampled footpaths, abundance of S. lindsayae and Eudorylaimus sp. was up to 52 and 76% lower, respectively, than in untrampled areas. Moreover, reduction in S. lindsayae abundance was more pronounced after 10 years than 2 years and in the surface soil than in the deeper soil, presumably because of the longer period of disturbance and the greater level of physical disturbance experienced by the surface soil. The ratio of living to dead Eudorylaimus sp. also declined with increased trampling intensity, which is indicative of increased mortality or reduced fecundity. At one site there was evidence that high levels of trampling reduced soil CO2 fluxes, which is related to total biological activity in the soil. Our results show that even low levels of human traffic can significantly affect soil biota in this ecosystem and may alter ecosystem processes, such as carbon cycling. Consequently, management and conservation plans for Antarctic soils should consider the high sensitivity of soil fauna to physical disturbance as human presence in this ecosystem increases.  相似文献   

20.
Given the speed at which humans are changing the climate, species with high degrees of endemism may not have time to avoid extinction through adaptation. We investigated through teleconnection analysis the origin of rainfall that determines the phylogenetic diversity of rainforest frogs and the effects of microclimate differences in shaping the morphological traits of isolated populations (which contribute to greater phylogenetic diversity and speciation). We also investigated through teleconnection analysis how deforestation in Amazonia can affect ecosystem services that are fundamental to maintaining the climate of the Atlantic rainforest biodiversity hotspot. Seasonal winds known as flying rivers carry water vapor from Amazonia to the Atlantic Forest, and the breaking of this ecosystem service could lead Atlantic Forest species to population decline and extinction in the short term. Our results suggest that the selection of morphological traits that shape Atlantic Forest frog diversity and their population dynamics are influenced by the Amazonian flying rivers. Our results also suggest that the increases of temperature anomalies in the Atlantic Ocean due to global warming and in the Amazon forest due to deforestation are already breaking this cycle and threaten the biodiversity of the Atlantic Forest hotspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号