首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nitrogen inputs to coastal environments can considerably alter the abundance of primary producers. However, how herbivores modify their trophic signatures and adjust to changes in food resource conditions remains controversial. Here, we assess the effect of nutrient availability on the diet shifts of the two main Mediterranean herbivores, the Sparid fish Sarpa salpa L. and the sea urchin Paracentrotus lividus (Lmk.) that feed mostly on the seagrass Posidonia oceanica L. (Delile), epiphytes and benthic macroalgae. To do this, we (1) investigate the patterns of isotopic composition (δ13C and δ15N signatures) of the two herbivores and their potential food sources in three areas of contrasting nutrient conditions and, (2) we assess the diet shift along this nutrient gradient by estimating the isotopic nutrient enrichment (i.e., the contribution of δ13C and δ15N signatures in consumers’ tissues relative to potential food sources). Food web signatures of δ13C were similar among the three study sites, and no patterns of δ13C shift were observed in their diets. In contrast, there was a consistent increase in N contents and δ15N along the nutrient gradient for all primary producers and their consumers. The rate of δ15N enrichment was also clearly distinctive between the two herbivores: in P. lividus it increased by 61% along the nutrient gradient, while in S. salpa it remained constant. Our results suggest that sea urchins behave as facultative omnivores and feed on vegetable or mixed diets depending on the trophic status of the system. It is unclear, however, if this modification is behavioral or the consequence of mere changes in the availability of food items, as animal epiphytes (e.g., hydrozoans, bryozoans and ascidians) can also became more abundant on seagrass leaves under increased nutrient conditions. In contrast, adult fish appear to feed on vegetal material independent of nutrient availability in the ecosystem.  相似文献   

2.
In an intertidal Zostera noltii Hornem seagrass bed, food sources used by sediment meiofauna were determined seasonally by comparing stable isotope signatures (δ13C, δ15N) of sources with those of nematodes and copepods. Proportions of different carbon sources used by consumers were estimated using the SIAR mixing model on δ13C values. Contrary to δ15N values, food source mean δ13C values encompassed a large range, from −22.1 ‰ (suspended particulate organic matter) to −10.0 ‰ (Z. noltii roots). δ13C values of copepods (from −22.3 to −12.3 ‰) showed that they use many food sources (benthic and phytoplanktonic microalgae, Z. noltii matter). Nematode δ13C values ranged from −14.6 to −11.4 ‰, indicating a strong role of microphytobenthos and/or Z. noltii matter as carbon sources. The difference of food source uses between copepods and nematodes is discussed in light of source accessibility and availability.  相似文献   

3.
We investigated the habitat use in green turtles exploiting a 13-ha multispecific seagrass meadow at Mayotte Island, south-western Indian Ocean. A phyto-ecological survey shows the occurrence of eight seagrass species, dominated by Halodule uninervis and Syringodium isoetifolium, distributed according to four distinct seagrass communities along the depth gradient. Direct underwater censuses show that green turtles occurred all over the meadow. Yet when community relative surface area was taken into account green turtles preferentially frequented the most seaward, biomass-richer S. isoetifolium-dominated community, suggesting that green turtles compensate for their intrinsically nutrient-poor herbivorous diet. Additionally, smaller (<80 cm standard curved carapace length, SCCL) individuals also preferentially occurred in the most shoreward H. univervis-dominated community where no larger (>80 cm SCCL) individuals were sighted, suggesting habitat use is indicative of diet selection and may reflect size-specific food requirements and physiology.  相似文献   

4.
We used carbon stable isotope and stomach content analyses to test whether snub-nosed garfish, Arrhamphus sclerolepis (Hemiramphidae), in the extensive artificial urban waterways of southeast Queensland, Australia, rely on autotrophic sources different to those in natural wetlands. Carbon isotope values of A. sclerolepis were similar to those in previous investigations, with enriched values in natural habitat (mean = −13.9‰, SE=0.6) and depleted values (−19.1‰, 0.1) in artificial habitat. A. sclerolepis in natural habitat consumed large amounts of seagrass during the day and night, and at night also ingested small quantities of crustacean prey. In artificial habitat, A. sclerolepis consumed macroalgae during the night and switched to invertebrates (terrestrial ants) in the day. Values of δ15 N in all the fish were 3–8‰ more enriched than sources. Mathematical modelling of feasible source mixtures showed that in natural habitat the bulk of the dietary carbon is obtained from seagrass, but the nitrogen is obtained from animal prey. In artificial habitat, carbon is obtained from a mixture of macroalgae and animals. We could not determine the nitrogen sources in artificial habitat of A. sclerolepis since, even after accounting for trophic fractionation of δ15 N, the values were outside the range of potential sources. If the types of animals ingested vary over time, perhaps one or more types of animal important in the provision of nitrogen was not sampled during the study. This study demonstrates that not only does A. sclerolepis occur in both artificial and natural habitats, but it uses the same strategy of bulk herbivory with the inclusion of smaller amounts of animal prey. This understanding of how ecological processes support fisheries production in artificial habitat improves the overall understanding of the effects of urbanisation on coastal food webs.  相似文献   

5.
The feeding ecology of the green tiger shrimp Penaeus semisulcatus was studied in inshore fishing grounds off Doha, Qatar, using a combination of stable isotope (δ13C and δ15N) analysis and gut contents examination. Samples of post-larvae, juvenile and adult shrimp and other organisms were collected from intertidal and subtidal zones during the spawning season (January–June). Shrimp collected from shallow water seagrass beds were mostly post-larvae and juveniles and were significantly smaller than the older juveniles and adults caught in deeper macroalgal beds. Gut content examination indicated that post-larvae and juvenile shrimp in seagrass beds fed mainly on benthos such as Foraminifera, polychaetes, benthic diatoms and small benthic crustaceans (amphipods, isopods and ostracoda), whereas larger shrimp in the macroalgal beds fed mainly on bivalve molluscs and to a lesser extent polychaetes. In shrimp from both seagrass and algal beds, unidentifiable detritus was also present in the gut (18, 32%). δ13C values for shrimp muscle tissue ranged from −9.5 ± 0.26 to −12.7 ± 0.05‰, and δ15N values increased with increasing shrimp size, ranging from 4.1 ± 0.03 to 7.7 ± 0.11‰. Both δ15N values and δ13C values for shrimp tissue were consistent with the dietary sources indicated by gut contents and the δ13C and δ15N values for primary producers and prey species. The combination of gut content and stable isotope data demonstrates that seagrass beds are important habitats for post-larvae and juvenile P. semisulcatus, while the transition to deeper water habitats in older shrimp involves a change in diet and source of carbon and nitrogen that is reflected in shrimp tissue stable isotope ratios. The results of the study confirm the linkage between sensitive shallow water habitats and the key life stages of an important commercially-exploited species and indicate the need for suitable assessment of the potential indirect impacts of coastal developments involving dredging and land reclamation.  相似文献   

6.
In summer 1998, shallow water corals at Sesoko Island, Japan (26°38′N, 127°52′E) were damaged by bleaching. In August 2003, partially damaged colonies of the massive Porites lutea and the branching P. cylindrica were collected at depths of 1.0–2.5 m. The species composition of epilithic algal communities on dead skeletal surfaces of the colonies (‘red turfs’, ‘green turfs’, ‘red crusts’) and the endolithic algae (living in coral skeletons) growing close to and away from living coral polyps was determined. Carbon and nitrogen stable isotope values of organic matter (δ13C and δ15N) from all six of these biological entities were determined. There were no significant differences in the isotope composition of coral tissues of the two corals, with P. lutea having δ13C of −15.3 to −9.6‰ and δ15N of 4.7–6.1‰ and P. cylindrica having similar values. Polyps in both species living close to an interface with epilithic algae had similar isotope values to polyps distant from such an interface. Despite differences in the relative abundance of the algal species in red turfs and crusts, their δ13C and δ15N values were not significantly different from each other (−18.2 to −13.9, −20.6 to −16.2, 1.1–4.3, and 3.3 to 4.9‰, respectively). The green algal turf had significantly higher δ13C values (−14.9 to −9.3‰) than that of red turfs and crusts but similar δ15N (1.2–4.1‰) to the red algae. The data do not suggest that adjoining associations of epilithic algae and coral polyps exchange carbon- and nitrogen-containing metabolites to a significant extent. The endolithic algae in the coral skeletons had δ13C values of −14.8 to −12.3‰ and δ15N of 4.0–5.4‰. Thus they did not differ significantly from the coral polyps in their carbon and nitrogen isotope values. The similarity in carbon isotope values between the coral polyps and endolithic algae may be attributed to a common source of CO2 for zooxanthellae and endolithic algae, namely, from respiration by the coral host. While it is difficult to fully interpret similarity in the nitrogen isotope composition of coral tissue and of green endolithic algae and the difference in δ15N between green epilithic and endolithic algae, the data are consistent with nitrogen-containing metabolites from the scleractinian coral serving as a significant source of nitrogen for the endolithic algae.  相似文献   

7.
The food web of two intertidal seagrass (Zostera marina and Zostera noltii) beds that may be influenced by the seasonal variation in food source abundance was studied in winter and in summer with δ13C and δ15N analysis. In spite of high relative variation of abundance of main primary producers at the two sites, the food web did not vary between winter and summer. The δ13C range of primary producers was wide. Zostera leaves, the most 13C-enriched source, were not consumed directly by grazers. Deposit and filter feeders have a similar δ13C and could use a mix of suspended and sedimented organic particulate matter, largely composed of detritus from macroalgae to seagrass. This trophic pathway allows the local incorporation of the high biomass produced by seagrasses. The wide δ15N range of predators was linked either to a large variety from omnivore to carnivore predators or to the also wide ranges of δ15N of primary consumers.  相似文献   

8.
V. Zupo  W. G. Nelson 《Marine Biology》1999,134(1):181-190
The ecological role and the association of Hippolyte zostericola (Smith, 1873) (Decapoda: Natantia) with different seagrass species in the Indian River Lagoon (Florida, USA) were investigated through field sampling and the analysis of diet, size–frequency distributions and laboratory experiments. Gut contents suggested that H. zostericola is a mesograzer which may be important in the transfer of primary production to higher trophic levels. Population size–frequency distributions showed a polymodal pattern variable according to the site. Preference experiments indicated that choice of seagrass species is not influenced by the available surface area of seagrass blades, nor by the presence of epiphytic food. Significant responses of the shrimp to the ambient light field, mediated by the seagrass canopy, were detected. A clear negative phototropism was observed for H. zostericola which may be an adaptive response to improve avoidance of visual predators. Received: 1 February 1998 / Accepted: 21 December 1998  相似文献   

9.
 The diet of juvenile pink shrimp (Farfantepenaeus duorarum Burkenroad, previously Penaeus duorarum) from Long Key Bight, Florida Keys, was studied using stomach content examination, pigment measurements, and stable isotope (δ13C and δ15N) analysis. Samples were taken over approximately 24 h on four occasions from December 1997 to June 1998. Juvenile F. duorarum fed nocturnally, the main prey being the seagrass shrimp Thor floridanus (Decapoda: Caridea: Hippolytidae), which accounted for 34% of the stomach content volume. Other common components of the diet were bivalves (mainly Tellina sp.) with 15% volume, calcareous algae (8%), plant detritus (5%), copepods (3%), and seagrass fragments (2%). Pigment concentrations (chlorophyll a plus phaeopigments) in F. duorarum stomachs ranged from 7 to 73 mg l−1 or 40 to 310 ng stomach−1. The exponential gastric evacuation rate was determined experimentally at 1.3 ± 0.5 h−1. Daily rations (in percent body weight) calculated from time series of stomach fullness ranged between 11 and 16% d−1. Total consumption by the population (in wet weight) ranged between 0.05 and 0.3 g m−2 d−1. Stable isotope measurements confirmed that T. floridanus was the main food source for F. duorarum. δ13C-values of whole animals of both species were identical at −10.0 ± 1.6‰ PDB. δ15N-values of both species were also not significantly different (pooled mean: 5.9 ± 1.7‰). Stomach contents of wild-caught F. duorarum and stomach contents of F. duorarum fed T. floridanus also showed similar stable isotope values. Received: 12 August 1999 / Accepted: 21 March 2000  相似文献   

10.
To examine variation in diet and daily ration of the bonnethead shark, Sphyrna tiburo (Linnaeus 1758), animals were collected from three areas in the eastern Gulf of Mexico: northwest Florida (∼29°40′N, 85°13′W), Tampa Bay near Anclote Key (∼28°10′N, 82°42.5′W), and Florida Bay (∼24°50′N, 80°48′W) from March through September, 1998–2000. In each area, diet was assessed by life stage (young-of-the year, juveniles, and adults) and quantified using five indices: percent by number (%N), percent by weight (%W), frequency of occurrence (%O), index of relative importance expressed on a percent basis (%IRI), and %IRI based on diet category (%IRIDC). Diet could not be assessed for young-of-the-year in Tampa Bay or Florida Bay owing to low sample size. Diet analysis showed an ontogenetic shift in northwest Florida. Young-of-the-year stomachs from northwest Florida (n = 68, 1 empty) contained a mix of seagrass and crustaceans while juvenile stomachs (n = 82, 0 empty) contained a mix of crabs and seagrass and adult stomachs (n = 39, 1 empty) contained almost exclusively crabs. Crabs made up the majority of both juvenile and adult diet in Tampa Bay (n = 79, 2 empty, and n = 88, 1 empty, respectively). Juvenile stomachs from Florida Bay (n = 72, 0 empty) contained seagrass and a mix of crustaceans while adult stomachs contained more shrimp and cephalopods (n = 82, 3 empty). Diets in northwest Florida and Tampa Bay were similar. The diet in Florida Bay was different from those in the other two areas, consisting of fewer crabs and more cephalopods and lobsters. Plant material was found in large quantities in all stomachs examined from all locations (>15 %IRIDC in 6 of the 7 life stage-area combinations, >30 %IRIDC in 4 of the 7 combinations, and 62 %IRIDC in young-of-the-year diet in northwest Florida). Using species- and area-specific inputs, a bioenergetic model was constructed to estimate daily ration. Models were constructed under two scenarios: assuming plant material was and was not part of the diet. Overall, daily ration was significantly different by sex, life stage, and region. The bioenergetic model predicted increasing daily ration with decreasing latitude and decreasing daily ration with ontogeny regardless of the inclusion or exclusion of plant material. These results provide evidence that bonnetheads continuously exposed to warmer temperatures have elevated metabolism and require additional energy consumption to maintain growth and reproduction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Seagrass meadows are among the most productive ecosystems in the marine environment. It has been speculated that much of this production is exported to adjacent ecosystems via the movements of organisms. Our study utilized stable isotopes to track seagrass-derived production into offshore food webs in the northeastern Gulf of Mexico. We found that gag grouper (Myctereoperca microlepis) on reefs as far as 90 km from the seagrass beds incorporate a significant portion of seagrass-derived biomass. The muscle tissue of gag grouper, a major fisheries species, was composed on average of 18.5–25% seagrass habitat-derived biomass. The timing of this annual seagrass subsidy appears to be important in fueling gag grouper egg production. The δ34S values of gag grouper gonad tissues varied seasonally and were δ34S depleted during the spawning season indicating that gag utilize the seagrass-derived biomass to support reproduction. If such large scale trophic subsidies are typical of temperate seagrass systems, then loss of seagrass production or habitat would result in a direct loss of offshore fisheries productivity.  相似文献   

12.
Spatial and seasonal distribution pattern, life history and production of three species of Neomysis (Mysidacea) which commonly occur in northwestern subarctic Pacific coastal waters, were investigated throughout the year in the Akkeshi-ko estuary, northern Japan. The most abundant species Neomysis awatschensis (annual mean density: 179.8 inds. m−2, biomass: 108.8 mg DW m−2) occurred at the inner part of the estuary including low salinity areas with no clear preference for the seagrass bed. The second most abundant Neomysis mirabilis (mean density: 95.8 inds. m−2, biomass: 90.1 mg DW m−2) occurred at relatively saline seagrass site throughout the year. Occurrence of Neomysis czerniawskii in the estuary was limited to the seagrass bed during summer when their population mainly consisted of juveniles, suggesting that this species is a seasonal migrant between the estuary and the marine environment. Both N. awatschensis and N. mirabilis populations were composed of two generation types, a larger sized overwintering and smaller sized spring/summer generations; however, each species had a different reproductive strategy. N. awatschensis was characterized by fast growth to maturity at a smaller size than N. mirabilis with a relatively high fecundity during warm season, suggesting that this species is an r-strategist which can utilize opportunistically a wide variety of habitats. In contrast, the seagrass bed resident N. mirabilis was a K-strategist which matures at a larger size producing fewer but larger offspring. The annual production of N. awatschensis (0.57–0.70 g DW m−2, mean of the whole estuary) and N. mirabilis (0.58–0.68 g DW m−2, mean of the seagrass bed) at their respective habitats was comparable. Consequently, species-specific life history and distribution pattern are concluded to allow Neomysis spp. to coexist in the estuary and the high carrying capacity of seagrass bed is suggested to contribute to maintain their high biomass level.  相似文献   

13.
The feeding ecology of Merluccius hubbsi was investigated in 2 regions of SE Brazil. The major food sources for the hakes were fish, crustaceans, and squid. In the upwelling system of Cabo Frio, the diet was very similar in the summers of 2001/2002 and spring 2002; fish were the most important prey followed by crustaceans. In Ubatuba, euphausiids were an important prey during the winter 2001 (100 m), while in the summer 2002, fish and amphipods predominated in the diet in the shallower site (40 m) and squid in the deeper site (100 m). The hakes showed temporal differences in stable isotope signatures in both regions, while C:N ratios varied only in Cabo Frio. δ15N and δ13C (bulk and corrected for lipid content) increased with fish length, which seems to be related to the increasing importance of fish and decreasing importance of euphausiids and amphipods in the diet of larger hakes. The mean trophic level of 3.7 for M. hubbsi was estimated using δ15N of bivalves as baseline and the fractionation of 3.4‰ between trophic levels.  相似文献   

14.
Cold seep communities in the Mediterranean Sea have only been discovered two decades ago, and their trophic ecology has been the subject of very few studies. We investigated the benthic food web of two deep chemosynthesis-based ecosystems on the Napoli and Amsterdam mud volcanoes (MVs) in the eastern Mediterranean Sea (~2,000 m depth). Seeping methane has been detected at the surface of both MVs during pioneering cruises and has been hypothesised to be assimilated by benthic fauna as observed in other oceans’ margins. Given the extreme oligotrophic character of the eastern Mediterranean Sea, we a priori expected that chemosynthetic food sources, especially methane-derived carbon (MDC), played a major trophic role in these deep seep communities relative to what has been observed in other seep systems worldwide. We aimed at unravelling the trophic relationships on Napoli and Amsterdam MVs through the analysis of carbon, nitrogen and sulphur isotopes both in the dominant benthic invertebrates including the small endofauna (300 μm < size < 1 cm) and in the sedimented organic matter. In particular, we assessed the fraction of MDC in the tissue of several heterotrophic and symbiotic species. Low mean δ34S and δ13C values (0.4 ± 4.8‰ and −31.6 ± 5.7‰, respectively) obtained for mega- and macrofauna suggested that the investigated benthic food webs are virtually exclusively fuelled by carbon of chemosynthetic origin. A few grazer invertebrates (δ34S up to 11‰) depart from this trend and could complement their diet with sedimented and decayed phytoplanktonic organic matter. Faunal δ13C values indicated that the oxidation of sulphur is likely the predominant energetic pathway for biosynthesis on both MVs. Nevertheless, mytilid bivalves and small capitellid, ampharetid and spionid polychaetes were 13C-depleted (δ13C < −37‰) in a way indicating they assimilated a significant portion of MDC. For these later heterotrophic species, MDC ranged between 21 and 31% (lower estimates) and 97 and 100% (upper estimates). However, our results highlighted that the origin of assimilated carbon may be complex for some symbiotic species. The vestimentiferan tubeworm Lamellibrachia sp., which exclusively depends on its sulphur-oxidising endosymbionts, showed a ~20‰ inter-individual δ13C variability on a very small spatial scale (<1 m) at the summit of Napoli MV. This mostly reflects the variable isotopic composition of pore-water-dissolved inorganic carbon (DIC) and evidenced that tubeworms (and subsequently their endosymbionts) uptake DIC derived from multiple methane oxidation processes in varying proportions. The lower and upper MDC estimates for the vestimentum of Napoli’s individuals were 11–38 and 21–73%, respectively. Finally, data on trophic ecology of Napoli and Amsterdam MVs clearly corroborate previous geophysical results evidencing the spatial heterogeneity of Mediterranean MV environmental conditions.  相似文献   

15.
In estuaries, eelgrass meadows contribute to fundamental ecosystem functions of estuaries, providing food to several predators and buffering the negative effects of eutrophication. We asked whether the presence of the eelgrass Zostera noltii decreased the nitrogen concentration in the overlying water, affected the sources of nitrogen sequestrated by primary producers and changed the benthic and pelagic food web structures. We also studied the importance of these food webs in providing food to fish. We compared bare sediment to sediment covered by a Z. noltii meadow, and examined nutrient concentrations in the water column and δ15N in primary producers as indicators of anthropogenic inputs of nutrients. We then measured both δ13C and δ15N in the tissues of plants and consumers to establish food web structures. There were no differences in the concentrations and sources of nitrogen between sites. Rather, δ15N values indicated anthropogenic inputs of N (e.g. sewage discharges, agriculture) in both sites. There were no major differences in the structure of the planktonic food web, which was in part sustained by particulate organic matter and supported most predator fish, and in the structure of the benthic food web. Nonetheless, there were differences in the sources of food for omnivore consumers and for the detritivore Scrobicularia plana. Overall, the benthic food web did not use food derived from the eelgrass or macroalgae deposited on the substratum. Suspension feeders used particulate and sediment organic matter, whereas the δ13C and δ15N values of the other consumers indicated a likely contribution of benthic microalgae. Furthermore, in both habitats we found large variability in the isotope signatures of benthic macrofauna consumers, which did not allow distinguishing clearly different trophic groups and indicated a high level of omnivory and a mixed diet opportunistically making use of the availability of food in the surroundings.  相似文献   

16.
Young green turtles (Chelonia mydas) spend their early lives as oceanic omnivores with a prevalence of animal prey. Once they settle into neritic habitats (recruitment), they are thought to shift rapidly to an herbivorous diet, as revealed by studies in the Greater Caribbean. However, the precise timing of the ontogenic dietary shift and the actual relevance of animal prey in the diet of neritic green turtles are poorly known elsewhere. Stable isotopes of carbon, sulfur and nitrogen in the carapace scutes of 19 green turtles from Mauritania (NW Africa), ranging from 26 to 102 cm in curved carapace length (CCLmin), were analyzed to test the hypothesis of a rapid dietary shift after recruitment. Although the length of residence time in neritic habitats increased with turtle length, as revealed by a significant correlation between turtle length and the δ13C and the δ34S of the scutes, comparison of the δ15N of the innermost and outermost layers of carapace scutes demonstrated that consumption of macrophytes did not always start immediately after recruitment, and turtles often resumed an animal-based diet after starting to graze on seagrasses. As a consequence, seagrass consumption did not increase gradually with turtle size and animal prey largely contributed to the diet of turtles within the range 29–59 cm CCLmin (76–99% of assimilated nutrients). Seagrass consumption by turtles larger than 59 cm CCLmin was higher, but they still relied largely on animal prey (53–76% of assimilated nutrients). Thus, throughout most of their neritic juvenile life, green turtles from NW Africa would be better classified as omnivores rather than herbivores. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The food sources of benthic deposit feeders were investigated at three stations in an estuarine mudflat (Idoura Lagoon, Sendai Bay, Japan) during July and August 2005, using δ13C and δ15N ratios. Sediment at the stations was characterized by low chlorophyll (chl) a content (0–1 cm depth, <4 μg cm−2) and the dominance of riverine–terrestrial materials (RTM) in the sediment organic matter (SOM) pool. Surface-deposit feeders (Macoma contabulata, Macrophthalmus japonicus, and Cyathura muromiensis) exhibited much higher δ13C values (−18.4 to −12.4‰) than did the SOM pool (<−25‰). A δ13C-based isotopic mixing model estimated that benthic diatoms comprised 45–100% (on average) of their assimilated diet, whereas RTM comprised a lesser fraction (29% maximum). The major diet of the deep-deposit feeding polychaetes Notomastus sp. and Heteromastus sp. was benthic diatoms and/or marine particulate organic matter (POM), with little RTM assimilated (39% maximum). The consumers appeared to lack specific digestive enzymes and to use detritus-derived carbon only after its transfer to the microbial biomass. The isotopic mixing model also showed that the dietary contribution of RTM increased slightly (15% maximum) in the vicinity of freshwater input, suggesting that spatial changes in RTM supply affect the dietary composition of deposit feeders. These results clearly demonstrate that deposit feeders selectively ingest and/or assimilate the more nutritious microalgal fractions in the SOM pool. Such adaptations may allow enhanced energy gain in estuarine mudflats that are rich in vascular plant detritus with low nutritive value.  相似文献   

18.
There has been an historical decline in the seagrass beds in Maho and Francis Bays, St. John, U.S. Virgin Islands: presently (1986) there are only five small seagrass beds in shallows water. These seagrass beds are highly disturbed by heavy boat usage and are intensively grazed by the green turtle Chelonia mydas L. Fifteen to 50 boats anchor each night in the bays: anchor scars cause a loss of up to 6.5 m2 d-1 or 1.8% yr-1 of the seagrass beds. Seagrasses regrew into such scars only minimally within a period of 7 mo. The size of the green turtle population was estimated at 50 subadults and their feeding behavior was determined by direct observation and radiotelemetry. The behavior of the green turtles differed from other observations published on the species. Here, the turtles grazed all available Thalassia testudinum, their preferred seagrass food, rather than creating discrete grazing scars, and spent all their waking hours (9 h per day) feeding. Areal productivity of T. testudinum leaves (33 to 97 mg dry wt m-2d-1) in the bays was at least an order of magnitude lower than published values or than the productivity of another, lessdisturbed seagrass bed on St. John, despite having comparable leaf-shoot density. Leaf shoots were stunted, fragile, achlorotic, and had only two leaves as opposed to the five leaves per shoot more typically seen. The green turtle population was near the estimated carrying capacity of T. testudinum, based on the standing crop and productivity of T. testudinum and the grazing rate of the turtles. The effect of disturbance of T. testudinum from boats and turtles was assessed by excluding these with emergent fences. Within 3 mo of protection, the areal and shoot-specific productivity of T. testudinum leaves as well as leaf size increased significantly compared to unprotected areas. Conservation efforts are recommended in Maho Bays and Francis because seagrass productivity is low, disturbance rates are higher than recovery rates, the turtles cannot increase further their feeding rate in order to compensate for such factors, and there are few alternate sources of T. testudinum on the north shore of St. John.Contribution No. 175 from West Indies Laboratory, Teague Bay, Christiansted, St. Croix, U.S. Virgin Islands 00820, USA  相似文献   

19.
We document the distribution and abundance of seagrasses, as well as the intra-annual temporal patterns in the abundance of seagrasses and the productivity of the nearshore dominant seagrass (Thalassia testudinum) in the south Florida region. At least one species of seagrass was present at 80.8% of 874 randomly chosen mapping sites, delimiting 12,800 km2 of seagrass beds in the 17,000-km2 survey area. Halophila decipiens had the greatest range in the study area; it was found to occur over 7,500 km2. The range of T. testudinum was almost as extensive (6,400 km2), followed by Syringodium filiforme (4,400 km2), Halodule wrightii (3,000 km2) and Halophila engelmanni (50 km2 ). The seasonal maxima of standing crop was about 32% higher than the yearly mean. The productivity of T. testudinum was both temporally and spatially variable. Yearly mean areal productivity averaged 0.70 g m−2day−1, with a range of 0.05–3.29 g m−2 day−1. Specific productivity ranged between 3.2 and 34.2 mg g−1 day−1, with a mean of 18.3 mg g−1 day−1. Annual peaks in specific productivity occurred in August, and minima in February. Integrating the standing crop for the study area gives an estimate of 1.4 × 1011 g T. testudinum and 3.6 × 1010 g S. filiforme, which translate to a yearly production of 9.4 × 1011 g T. testudinum leaves and 2.4 × 1011 g S. filiforme leaves. We assessed the efficacy of rapid visual surveys for estimating abundance of seagrasses in south Florida by comparing these results to measures of leaf biomass for T. testudinum and S. filiforme. Our rapid visual surveys proved useful for quantifying seagrass abundance, and the data presented in this paper serve as a benchmark against which future change in the system can be quantified. Received: 30 January 2000 / Accepted: 24 July 2000  相似文献   

20.
The role of zooplankton in a tropical seagrass ecosystem was investigated in milkfish farms pollution-impacted and -unimpacted seagrass beds in Santiago Island coral reefs, Northwestern Philippines. The aim was to compare between the two sites: (1) abiotic factors and zooplankton community parameters, and (2) the trophic structure using C and N stable isotopes. Low water (98–119?mV) and sediment (–121 to ?138?mV) Oxidation Reduction Potential values indicated a reducing environment in the impacted site. Zooplankton in the impacted site showed the typical community response to eutrophication (low diversity, but high total abundance due to the dominance of the cyclopoid copepod Oithona oculata), generally few elevated δ15N values, but a significant shift towards depleted 13C due to the organic enrichment of fish-farm feeds. Apart from suggesting a highly complex food web with POM and zooplankton as main food sources in the unimpacted site, the Bayesian mixing model simulation generated reduced complexity in feeding interactions between basal sources, zooplankton, and fish including adults of a key fish species, Siganus fuscescens, in the impacted sites. In this study, C and N stable isotope analysis has clarified the importance of zooplankton as fish prey in a seagrass bed food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号