首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: The Soil and Water Assessment Tool (SWAT) model combined with different snowmelt algorithms was evaluated for runoff simulation of an 114,345 km2 mountainous river basin (the headwaters of the Yellow River), where snowmelt is a significant process. The three snowmelt algorithms incorporated into SWAT were as follows: (1) the temperature‐index, (2) the temperature‐index plus elevation band, and (3) the energy budget based SNOW17. The SNOW17 is more complex than the temperature‐based snowmelt algorithms, and requires more detailed meteorological and topographical inputs. In order to apply the SNOW17 in the SWAT framework, SWAT was modified to operate at the pixel scale rather than the normal Hydrologic Response Unit scale. The three snowmelt algorithms were evaluated under two parameter scenarios, the default and the calibrated parameters scenarios. Under the default parameters scenario, the parameter values were determined based on a review of the current literature. The purpose of this type of evaluation was to assess the applicability of SWAT in ungauged basins, where there is little observed data available for calibration. Under the calibrated parameters scenario, the parameters were calibrated using an automatic calibration program, the Shuffled Complex Evolution (SCE‐UA). The purpose of this type of evaluation was to assess the applicability of SWAT in gauged basins. Two time periods (1975‐1985 and 1986‐1990) of monthly runoff data were used in this study to evaluate the performance of SWAT with different snowmelt algorithms. Under the default parameters scenario, the SWAT model with complex energy budget based SNOW17 performed the best for both time periods. Under the calibrated parameters scenario, the parameters were calibrated using monthly runoff from 1975‐1985 and validated using monthly runoff from 1986‐1990. After parameter calibration, the performance of SWAT with the three snowmelt algorithms was improved from the default parameters scenario. Further, the SWAT model with temperature‐index plus elevation band performed as well as the SWAT model with SNOW17. The SWAT model with temperature‐index algorithm performed the poorest for both time periods under both scenarios. Therefore, it is suggested that the SNOW17 model be used for modeling ungauged basins; however, for gauged basins, the SNOW17 and simple temperature‐index plus elevation band models could provide almost equally good runoff simulation results.  相似文献   

2.
Abstract: The Soil and Water Assessment Tool (SWAT) has been applied successfully in temperate environments but little is known about its performance in the snow‐dominated, forested, mountainous watersheds that provide much of the water supply in western North America. To address this knowledge gap, we configured SWAT to simulate the streamflow of Tenderfoot Creek (TCSWAT). Located in central Montana, TCSWAT represents a high‐elevation watershed with ~85% coniferous forest cover where more than 70% of the annual precipitation falls as snow, and runoff comes primarily from spring snowmelt. Model calibration using four years of measured daily streamflow, temperature, and precipitation data resulted in a relative error (RE) of 2% for annual water yield estimates, and mean paired deviations (Dv) of 36 and 31% and Nash‐Sutcliffe (NS) efficiencies of 0.90 and 0.86 for monthly and daily streamflow, respectively. Model validation was conducted using an additional four years of data and the performance was similar to the calibration period, with RE of 4% for annual water yields, Dv of 43% and 32%, and NS efficiencies of 0.90 and 0.76 for monthly and daily streamflow, respectively. An objective, regression‐based model invalidation procedure also indicated that the model was validated for the overall simulation period. Seasonally, SWAT performed well during the spring and early summer snowmelt runoff period, but was a poor predictor of late summer and winter base flow. The calibrated model was most sensitive to snowmelt parameters, followed in decreasing order of influence by the surface runoff lag, ground water, soil, and SCS Curve Number parameter sets. Model sensitivity to the surface runoff lag parameter reflected the influence of frozen soils on runoff processes. Results indicated that SWAT can provide reasonable predictions of annual, monthly, and daily streamflow from forested montane watersheds, but further model refinements could improve representation of snowmelt runoff processes and performance during the base flow period in this environment.  相似文献   

3.
ABSTRACT: The performance of two popular watershed scale simulation models — HSPF and SWAT — were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine‐year period (1987 through 1995) and verified using an independent 15‐year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models' hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF's overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application.  相似文献   

4.
Watershed simulation models such as the Soil & Water Assessment Tool (SWAT) can be calibrated using “hard data” such as temporal streamflow observations; however, users may find upon examination of model outputs, that the calibrated models may not reflect actual watershed behavior. Thus, it is often advantageous to use “soft data” (i.e., qualitative knowledge such as expected denitrification rates that observed time series do not typically exist) to ensure that the calibrated model is representative of the real world. The primary objective of this study is to evaluate the efficacy of coupling SWAT‐Check (a post‐evaluation framework for SWAT outputs) and IPEAT‐SD (Integrated Parameter Estimation and Uncertainty Analysis Tool‐Soft & hard Data evaluation) to constrain the bounds of soft data during SWAT auto‐calibration. IPEAT‐SD integrates 59 soft data variables to ensure SWAT does not violate physical processes known to occur in watersheds. IPEAT‐SD was evaluated for two case studies where soft data such as denitrification rate, nitrate attributed from subsurface flow to total discharge ratio, and total sediment loading were used to conduct model calibration. Results indicated that SWAT model outputs may not satisfy reasonable soft data responses without providing pre‐defined bounds. IPEAT‐SD provides an efficient and rigorous framework for users to conduct future studies while considering both soft data and traditional hard information measures in watershed modeling.  相似文献   

5.
Abstract: This article describes the development of a calibrated hydrologic model for the Blue River watershed (867 km2) in Summit County, Colorado. This watershed provides drinking water to over a third of Colorado’s population. However, more research on model calibration and development for small mountain watersheds is needed. This work required integration of subsurface and surface hydrology using GIS data, and included aspects unique to mountain watersheds such as snow hydrology, high ground‐water gradients, and large differences in climate between the headwaters and outlet. Given the importance of this particular watershed as a major urban drinking‐water source, the rapid development occurring in small mountain watersheds, and the importance of Rocky Mountain water in the arid and semiarid West, it is useful to describe calibrated watershed modeling efforts in this watershed. The model used was Soil and Water Assessment Tool (SWAT). An accurate model of the hydrologic cycle required incorporation of mountain hydrology‐specific processes. Snowmelt and snow formation parameters, as well as several ground‐water parameters, were the most important calibration factors. Comparison of simulated and observed streamflow hydrographs at two U.S. Geological Survey gaging stations resulted in good fits to average monthly values (0.71 Nash‐Sutcliffe coefficient). With this capability, future assessments of point‐source and nonpoint‐source pollutant transport are possible.  相似文献   

6.
Abstract: Impact of watershed subdivision and soil data resolution on Soil Water Assessment Tool (SWAT) model calibration and parameter uncertainty is investigated by creating 24 different watershed model configurations for two study areas in northern Indiana. SWAT autocalibration tool is used to calibrate 14 parameters for simulating seven years of daily streamflow records. Calibrated parameter sets are found to be different for all 24 watershed configurations, however in terms of calibrated model output, their effect is minimal. In some cases, autocalibration is followed by manual calibration to correct for low flows, which were underestimated during autocalibration. In addition to normal validation using four years of streamflow data for each calibrated parameter set, cross‐validation (using a calibrated parameter set from one model configuration to validate observations using another configuration) is performed to investigate the effect of different model configurations on streamflow prediction. Results show that streamflow output during cross‐validation is not affected, thus highlighting the non‐unique nature of calibrated parameters in hydrologic modeling. Finally, parameter uncertainty is investigated by extracting good parameter sets during the autocalibration process. Parameter uncertainty analysis suggests that significant parameters show very narrow range of uncertainty across different watershed configurations compared with nonsignificant parameters. Results from recalibration of some configurations using only six significant parameters were comparable to that from calibration using 14 parameters, suggesting that including fewer significant parameters could reduce the uncertainty arising from model parameters, and also expedite the calibration process.  相似文献   

7.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

8.
Abstract: Snowmelt largely affects runoff in watersheds in Nordic countries. Neural networks (NN) are particularly attractive for streamflow forecasting whereas they rely at least on daily streamflow and precipitation observations. The selection of pertinent model inputs is a major concern in NNs implementation. This study investigates performance of auxiliary NN inputs that allow short‐term streamflow forecasting without resorting to a deterministic snowmelt routine. A case study is presented for the Rivière des Anglais watershed (700 km2) located in Southern Québec, Canada. Streamflow (Q), precipitations (rain R and snow S, or total P), temperature (T) and snow lying (A) observations, combined with climatic and snowmelt proxy data, including snowmelt flow (QSM) obtained from a deterministic model, were tested. NN implemented with antecedent Q and R produced the largest gains in performance. Introducing increments of A and T to the NNs further improved the performance. Long‐term averages, seasonal data, and QSM failed to improve the networks.  相似文献   

9.
Abstract: The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash‐Sutcliffe model Efficiency (NSE) and mean relative error values of daily flow estimations were 0.66 and 15% for calibration, and 0.56 and 4% for validation, respectively. Also, further evaluation of the model’s estimation of flow at multiple locations was conducted with parametric paired t‐test and nonparametric sign test at a 95% confidence level. Among the five main stem stations, four stations were statistically shown to have good agreement between predicted and measured flows. SWAT underestimated the flow of the fifth main stem station possibly because of the existence of complex flood control measures near to the station. SWAT estimated the daily flow at one tributary station well, but with relatively large errors for the other two tributaries. The spatial pattern of predicted flows matched the measured ones well. Overall, it was concluded from the graphical comparisons and statistical analyses of the model results that SWAT was capable of reproducing continuous daily flows based on limited flow data as is the case in the UOC watershed.  相似文献   

10.
ABSTRACT: The purpose of this study was to evaluate the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) watershed management system. BASINS data were used with the NPSM model to predict discharge and sediment concentrations at the outlet of a 103 km2 Ohio watershed. It was concluded that the NPSM model should always be calibrated but only a few of the parameters provided with BASINS needed to be calibrated. For a three‐year study period, there was a 2 percent underestimation of discharge using area weighted precipitation values and a 25 percent overestimation using the single station data in BASINS. A comparison of observed and predicted monthly discharge resulted in an r2 of 0.86 with area‐weighted precipitation and an r2 of 0.74 with the single station data. Calibrating the model to substantially improve sediment predictions was unsuccessful and we concluded that a calibration period of one year was too short. For the three‐year study period, the r2 for sediment was 0.36 with a slope of 0.37 and an intercept of 18.8 mg/l. The mean observed and predicted sediment concentrations were 27.1 mg/l and 22.6 mg/l, respectively.  相似文献   

11.
ABSTRACT: Soil data comprise a basic input of SWAT (Soil and Water Assessment Tool) for a watershed application. For watersheds where site specific soil data are unavailable, the two U.S. Department of Agriculture (USDA) soil databases, the State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) databases, may be the best alternatives. Although it has been noted that SWAT models using the STATSGO and SSURGO data may give different simulation results for water, sediment, and agricultural chemical yields, information is scarce on the effects of using these two databases in predicting streamflows that are predominantly generated from melting snow in spring. The objective of this study was to assess the effects of using STATSGO versus SSURGO as an input for the SWAT model's simulation of the streamflows in the upper 45 percent of the Elm River watershed in eastern North Dakota. Designating the model as SWAT‐STATSGO when the STATSGO data were used and SWAT‐SSURGO when the SSURGO data were used, SWAT‐STATSGO and SWAT‐SSURGO were separately calibrated and validated using the observed daily streamflows. The results indicated that SWAT‐SSURGO provided an overall better prediction of the discharges than SWAT‐STATSGO, although both did a good and comparable job of predicting the high streamflows. However, SWAT‐STATSGO predicted the low streamflows more accurately and had a slightly better performance during the validation period. In addition, the discrepancies between the discharges predicted by these two SWAT models tended to be larger at upstream locations than at those farther downstream within the study area.  相似文献   

12.
The ability of a watershed model to mimic specified watershed processes is assessed through the calibration and validation process. The Soil and Water Assessment Tool (SWAT) watershed model was implemented in the Beaver Reservoir Watershed of Northwest Arkansas. The objectives were to: (1) provide detailed information on calibrating and applying a multisite and multivariable SWAT model; (2) conduct sensitivity analysis; and (3) perform calibration and validation at three different sites for flow, sediment, total phosphorus (TP), and nitrate‐nitrogen (NO3‐N) plus nitrite‐nitrogen (NO2‐N). Relative sensitivity analysis was conducted to identify parameters that most influenced predicted flow, sediment, and nutrient model outputs. A multi objective function was defined that consisted of optimizing three statistics: percent relative error (RE), Nash‐Sutcliffe Coefficient (RNS2), and coefficient of determination (R2). This function was used to successfully calibrate and validate a SWAT model of Beaver Reservoir Watershed at multi‐sites while considering multivariables. Calibration and validation of the model is a key factor in reducing uncertainty and increasing user confidence in its predictive abilities, which makes the application of the model effective. Information on calibration and validation of multisite, multivariable SWAT models has been provided to assist watershed modelers in developing their models to achieve watershed management goals.  相似文献   

13.
ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R2) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were ?0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds.  相似文献   

14.
A comprehensive streambank erosion model based on excess shear stress has been developed and incorporated in the hydrological model Soil and Water Assessment Tool (SWAT). It takes into account processes such as weathering, vegetative cover, and channel meanders to adjust critical and effective stresses while estimating bank erosion. The streambank erosion model was tested for performance in the Cedar Creek watershed in north‐central Texas where streambank erosion rates are high. A Rapid Geomorphic field assessment (RAP‐M) of the Cedar Creek watershed was done adopting techniques developed by the Natural Resources Conservation Service (NRCS), and the stream segments were categorized into various severity classes. Based on the RAP‐M field assessment, erosion pin sites were established at seven locations within the severely eroding streambanks of the watershed. A Monte Carlo simulation was carried out to assess the sensitivity of different parameters that control streambank erosion such as critical shear stress, erodibility, weathering depth, and weathering duration. The sensitive parameters were adjusted and the model was calibrated based on the bank erosion severity category identified by the RAP‐M field assessment. The average observed erosion rates were in the range 25‐367 mm year?1. The SWAT model was able to reasonably predict the bank erosion rates within the range of variability observed in the field (R2 = 0.90; E = 0.78). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

15.
This study simulated crop and water yields in the Missouri River Basin (MRB; 1,371,000 km2), one of the largest river basins in the United States, using the Soil and Water Assessment Tool (SWAT) at a fine resolution of 12‐digit Hydrological Unit Codes (HUCs) using the regionalization calibration approach. Very few studies have simulated the entire MRB, and those that have developed were at a coarser resolution of 8‐digit HUCs and were minimally calibrated. The MRB was first divided into three subbasins and was further divided into eleven regions. A “head watershed” was selected in each region and was calibrated for crop and water yields. The parameters from the calibrated head watershed were extrapolated to other subwatersheds in the region to complete comprehensive spatial calibration. The simulated crop yields at the head watersheds were in close agreement with observed crop yields. Spatial validation of the aggregated crop yields resulted in reasonable predictions for all crops except dryland corn in a few regions. Simulated and observed water yields in head watersheds and also in the validation locations were in close agreement in naturalized streams and poor agreement in streams with high groundwater‐surface water interactions and/or reservoirs found upstream of the gauges. Overall, the SWAT model was able to reasonably capture the hydrological and crop growth dynamics occurring in the basin despite some limitations.  相似文献   

16.
Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental‐scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental‐extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1‐km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed‐scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed‐scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national‐scale categorization of snowmelt processes.  相似文献   

17.
ABSTRACT: Clearcutting aspen from the upland portion of an upland peatland watershed in north central Minnesota caused snowmelt peak discharge to increase 11 to 143 percent. Rainfall peak discharge size increased as much as 250 percent during the first two years after clearcutting, then decreased toward precutting levels in subsequent years. Storm flow volumes from rain during the first two years increased as much as 170 percent but declined to preharvest volumes in the third year. Snowmelt volumes did not significantly change. Snowmelt peak discharge occurred about four to five days earlier after clearcutting, but the timing of storm flow from rainfall was not changed. Snowmelt peaks remained above precut size for nine years after clearcutting on an area undergoing natural regeneration to aspen saplings. Partial cutting - up to approximately one-half of the watershed - reduced peak snowmelt discharge because melt was desynchronized in cleared and forested parts. Clearing more than 2/3 of the watershed caused snowmelt flood peak size to double during years with snow packs in excess of seven inches of water that remained until a day when maximum air temperatures exceeded 60d?F.  相似文献   

18.
Due to resource constraints, long‐term monitoring data for calibration and validation of hydrologic and water quality models are rare. As a result, most models are calibrated and, if possible, validated using limited measured data. However, little research has been done to determine the impact of length of available calibration data on model parameterization and performance. The main objective of this study was to evaluate the impact of length of calibration data (LCD) on parameterization and performance of the Agricultural Policy Environmental eXtender model for predicting daily, monthly, and annual streamflow. Long‐term (1984‐2015) measured daily streamflow data from Rock Creek watershed, an agricultural watershed in northern Ohio, were used for this study. Data were divided into five Short (5‐year), two Medium (15‐year), and one Long (25‐year) streamflow calibration data scenarios. All LCD scenarios were calibrated and validated at three time steps: daily, monthly, and annual. Results showed LCD affected the ability of the model to accurately capture temporal variability in simulated streamflow. However, overall average streamflow, water budgets, and crop yields were simulated reasonably well for all LCD scenarios.  相似文献   

19.
Shrestha, Rajesh R., Yonas B. Dibike, and Terry D. Prowse, 2011. Modeling Climate Change Impacts on Hydrology and Nutrient Loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association (JAWRA) 48(1): 74‐89. DOI: 10.1111/j.1752‐1688.2011.00592.x Abstract: This paper presents a modeling study on climate‐induced changes in hydrologic and nutrient fluxes in the Upper Assiniboine catchment, located in the Lake Winnipeg watershed. The hydrologic and agricultural chemical yield model, Soil and Water Assessment Tool (SWAT) was employed to model a 21‐year baseline (1980‐2000) and future (2042‐2062) periods with model forcings for future climates derived from three regional climate models (RCMs) and their ensemble means. The modeled future scenarios reveal that potential future changes in the climatic regime are likely to modify considerably hydrologic and nutrient fluxes. The effects of future changes in climatic variables, especially precipitation and temperature, are clearly evident in the resulting snowmelt and runoff regimes. The future hydrologic scenarios consistently show earlier onsets of spring snowmelt and discharge peaks, and higher total runoff volumes. The simulated nutrient loads closely match the dynamics of the future runoff for both nitrogen and phosphorus, in terms of earlier timing of peak loads and higher total loads. However, nutrient concentrations could decrease due to the higher rate of runoff increase. Overall, the effects of these changes on the nutrient transport regime need to be considered together with possible future changes in land use, crop type, fertilizer application, and transformation processes in the receiving water bodies.  相似文献   

20.
Harshburger, Brian J., Von P. Walden, Karen S. Humes, Brandon C. Moore, Troy R. Blandford, and Albert Rango, 2012. Generation of Ensemble Streamflow Forecasts Using an Enhanced Version of the Snowmelt Runoff Model. Journal of the American Water Resources Association (JAWRA) 48(4): 643‐655. DOI: 10.1111/j.1752‐1688.2012.00642.x Abstract: As water demand increases in the western United States, so does the need for accurate streamflow forecasts. We describe a method for generating ensemble streamflow forecasts (1‐15 days) using an enhanced version of the snowmelt runoff model (SRM). Forecasts are produced for three snowmelt‐dominated basins in Idaho. Model inputs are derived from meteorological forecasts, snow cover imagery, and surface observations from Snowpack Telemetry stations. The model performed well at lead times up to 7 days, but has significant predictability out to 15 days. The timing of peak flow and the streamflow volume are captured well by the model, but the peak‐flow value is typically low. The model performance was assessed by computing the coefficient of determination (R2), percentage of volume difference (Dv%), and a skill score that quantifies the usefulness of the forecasts relative to climatology. The average R2 value for the mean ensemble is >0.8 for all three basins for lead times up to seven days. The Dv% is fairly unbiased (within ±10%) out to seven days in two of the basins, but the model underpredicts Dv% in the third. The average skill scores for all basins are >0.6 for lead times up to seven days, indicating that the ensemble model outperforms climatology. These results validate the usefulness of the ensemble forecasting approach for basins of this type, suggesting that the ensemble version of SRM might be applied successfully to other basins in the Intermountain West.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号