首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Riparian zones in semi‐arid, mountainous regions provide a disproportionate amount of the available wildlife habitat and ecosystem services. Despite their importance, there is little guidance on the best way to map riparian zones for broad spatial extents (e.g., large watersheds) when detailed maps from field data or high‐resolution imagery and terrain data are not available. Using well‐established accuracy metrics (e.g., kappa, precision, computational complexity), we evaluated eight methods commonly used to map riparian zones. Focusing on a semi‐arid, mountainous watershed, we found that the most accurate and robust method for mapping riparian zones combines data on upstream drainage area and valley topography. That method performed best regardless of stream order, and was most effective when implemented with fine resolution topographic and stream line data. Other commonly used methods to model riparian zones, such as those based on fixed‐width buffers, yielded inaccurate results. We recommend that until very‐high resolution (<1 m) elevation data are available at broad extents, models of riparian zones for semi‐arid mountainous regions should incorporate drainage area, valley topography, and quantify uncertainty.  相似文献   

2.
Riparian buffer zone management is an area of increasing relevance as human modification of the landscape continues unabated. Land and water resource managers are continually challenged to maintain stream ecosystem integrity and water quality in the context of rapidly changing land use, which often offsets management gains. Approaches are needed not only to map vegetation cover in riparian zones, but also to monitor the changes taking place, target restoration activities, and assess the success of previous management actions. To date, these objectives have been difficult to meet using traditional techniques based on aerial photos and field visits, particularly over large areas. Recent advances in remote sensing have the potential to substantially aid buffer zone management. Very high resolution imagery is now available that allows detailed mapping and monitoring of buffer zone vegetation and provides a basis for consistent assessments using moderately high resolution remote sensing (e.g., Landsat). Laser‐based remote sensing is another advance that permits even more detailed information on buffer zone properties, such as refined topographic derivatives and multidimensional vegetation structure. These sources of image data and map information are reviewed in this paper, examples of their application to riparian buffer mapping and stream health assessment are provided, and future prospects for improved buffer monitoring are discussed.  相似文献   

3.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

4.
ABSTRACT: The quality of stream habitat varies for a variety of natural and anthropogenic reasons not identified by a condition index. However, many people use condition indices to indicate management needs or even direction. To better sort natural from livestock influences, stream types and levels of ungulate bank damage were regulated to estimates of aquatic habitat condition index and stream width parameters in a large existing stream inventory data base. Pool/riffle ratio, pool structure, stream bottom materials, soil stability, and vegetation type varied significantly with stream type. Pool/riffle ratio, soil and vegetation stability varied significantly with ungulate bank damage level. Soil and vegetation stability were highly cross-correlated. Riparian area width did not vary significantly with either stream type or ungulate bank damage. Variation among stream types indicates that riparian management and monitoring should be stream type and reach specific.  相似文献   

5.
ABSTRACT: An attempt was made to review all available data on the extent and status of riparian ecosystems in the U.S.A. This report presents a synthesis of the findings, including some estimates of how much land was originally covered by woody riparian vegetation, and how much remains in that condition today. A synopsis of information is presented on the status of riparian ecosystems in each of 10 regions: California, Pacific Northwest, Rocky Mountain, Arid Southwest, Plains-Grasslands, Lake States, Corn Belt, Mississippi Delta, Northeast-Appalachian, and Southeast. Woody riparian plant communities once covered an estimated 75 to 100 million acres of land in the contiguous 48 states. Mankind has converted at least two-thirds of that nationwide acreage to other non-forest land uses and it is estimated that only 25 to 35 million acres of riparian plant communities remain in a near natural condition. Across the country, loss of riparian acreages is directly attributable to water resource development (especially channel modification and water impoundment), floodplain clearing for agriculture, and urbanization. In many states of the arid west, the midwest, and the lower Mississippi alluvial valley, riparian vegetation has been reduced in area by more than 80 percent. Riparian woodlands are one of this country's most heavily modified natural vegetation types.  相似文献   

6.
Light Detection and Ranging (LiDAR), is relatively inexpensive, provides high spatial resolution sampling at great accuracy, and can be used to generate surface terrain and land cover datasets for urban areas. These datasets are used to develop high‐resolution hydrologic models necessary to resolve complex drainage networks in urban areas. This work develops a five‐step algorithm to generate indicator fields for tree canopies, buildings, and artificial structures using Geographic Resources Analysis Support System (GRASS‐GIS), and a common computing language, Matrix Laboratory. The 54 km2 study area in Parker, Colorado consists of twenty‐four 1,500 × 1,500 m LiDAR subsets at 1 m resolution with varying degrees of urbanization. The algorithm correctly identifies 96% of the artificial structures within the study area; however, application success is dependent upon urban extent. Urban land use fractions below 0.2 experienced an increase in falsely identified building locations. ParFlow, a three‐dimensional, grid‐based hydrological model, uses these building and artificial structure indicator fields and digital elevation model for a hydrologic simulation. The simulation successfully develops the complex drainage network and simulates overland flow on the impervious surfaces (i.e., along the gutters and off rooftops) made possible through this spatial analysis process.  相似文献   

7.
Paech, Simon J., John R. Mecikalski, David M. Sumner, Chandra S. Pathak, Quinlong Wu, Shafiqul Islam, and Taiye Sangoyomi, 2009. A Calibrated, High‐Resolution GOES Satellite Solar Insolation Product for a Climatology of Florida Evapotranspiration. Journal of the American Water Resources Association (JAWRA) 45(6):1328‐1342. Abstract: Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10‐year period (1995‐2004). These insolation estimates were developed into well‐calibrated half‐hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2‐week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground‐based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three‐step process: (1) comparison with ground‐based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station‐averaged model error of 2.2 MJ m?2/day (13%). Calibration reduced errors to 1.7 MJ m?2/day (10%), and also removed temporal‐related, seasonal‐related, and satellite sensor‐related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2‐km resolution maps of estimated daily reference and potential evapotranspiration for water management‐related activities.  相似文献   

8.
Abstract: The 1:24,000‐scale high‐resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time‐relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR‐derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.  相似文献   

9.
The widespread construction of levees has reduced river–floodplain connectivity and altered associated fluvial processes in many river systems. Despite the recognition that levees can alter floodplain connectivity, few studies have examined the role of levees in reducing floodplain areas at large watershed scales. This paper explores the application of a hydrogeomorphic floodplain inundation model in the Wabash Basin, located in the Midwestern United States, to assess changes in floodplain area in levee‐protected areas. We evaluate 10‐ and 30‐m topographic resolutions and spatially examine the influence of levees on floodplain area in relation to river network attributes. Generally, floodplains in levee‐protected areas were influenced by topographic resolution, stream order, and elevation details of levees found in topography datasets. We show, when compared to Federal Emergency Management Agency maps, our approach underpredicts floodplain area when using 10‐m resolution topography data but only slightly overpredicts when using 30‐m resolution data. After removing details of levees from topography data, we found changes in floodplain area varied spatially, but basin‐aggregate results changed little compared to topography datasets that contain levees, though larger floodplain areas were produced in some regions where levees were removed. This work contributes to a growing research emphasis on using hydrogeomorphic floodplain models to understand floodplain disconnectivity.  相似文献   

10.
Human alterations to the Iowa landscape, such as elimination of native vegetation for row crop agriculture and grazing, channelization of streams, and tile and ditch drainage, have led to deeply incised channels with accelerated streambank erosion. The magnitude of streambank erosion and soil loss were compared along Bear Creek in central Iowa. The subreaches are bordered by differing land uses, including reestablished riparian forest buffers, row crop fields, and continuously grazed riparian pastures. Erosion pins were measured from June 1998 to July 2002 to estimate the magnitude of streambank erosion. Total streambank soil loss was estimated by using magnitude of bank erosion, soil bulk density, and severely eroded bank area. Significant seasonal and yearly differences in magnitude of bank erosion and total soil loss were partially attributed to differences in precipitation and associated discharges. Riparian forest buffers had significantly lower magnitude of streambank erosion and total soil loss than the other two riparian land uses. Establishment of riparian forest buffers along all of the nonbuffered subreaches would have reduced stream‐bank soil loss by an estimated 77 to 97 percent, significantly decreasing sediment in the stream, a major water quality problem in Iowa.  相似文献   

11.
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   

12.
Abstract: Phosphorus and sediment are major nonpoint source pollutants that degrade water quality. Streambank erosion can contribute a significant percentage of the phosphorus and sediment load in streams. Riparian land‐uses can heavily influence streambank erosion. The objective of this study was to compare streambank erosion along reaches of row‐cropped fields, continuous, rotational and intensive rotational grazed pastures, pastures where cattle were fenced out of the stream, grass filters and riparian forest buffers, in three physiographic regions of Iowa. Streambank erosion was measured by surveying the extent of severely eroding banks within each riparian land‐use reach and randomly establishing pin plots on subsets of those eroding banks. Based on these measurements, streambank erosion rate, erosion activity, maximum pin plot erosion rate, percentage of streambank length with severely eroding banks, and soil and phosphorus losses per unit length of stream reach were compared among the riparian land‐uses. Riparian forest buffers had the lowest streambank erosion rate (15‐46 mm/year) and contributed the least soil (5‐18 tonne/km/year) and phosphorus (2‐6 kg/km/year) to stream channels. Riparian forest buffers were followed by grass filters (erosion rates 41‐106 mm/year, soil losses 22‐47 tonne/km/year, phosphorus losses 9‐14 kg/km/year) and pastures where cattle were fenced out of the stream (erosion rates 22‐58 mm/year, soil losses 6‐61 tonne/km/year, phosphorus losses 3‐34 kg/km/year). The streambank erosion rates for the continuous, rotational, and intensive rotational pastures were 101‐171, 104‐122, and 94‐170 mm/year, respectively. The soil losses for the continuous, rotational, and intensive rotational pastures were 197‐264, 94‐266, and 124‐153 tonne/km/year, respectively, while the phosphorus losses were 71‐123, 37‐122, and 66 kg/km/year, respectively. The only significant differences for these pasture practices were found among the percentage of severely eroding bank lengths with intensive rotational grazed pastures having the least compared to the continuous and rotational grazed pastures. Row‐cropped fields had the highest streambank erosion rates (239 mm/year) and soil losses (304 tonne/km/year) and very high phosphorus losses (108 kg/km/year).  相似文献   

13.
Abstract: Guidelines for riparian vegetative shade restoration were developed using a theoretical model of total daily radiation received by a shaded stream. The model assumed stream shading by nontransmitting, vertical or overhanging, solid vegetation planes in infinitely long reaches. Radiation components considered in the model were direct beam shortwave on the stream centerline, diffuse atmospheric shortwave, shortwave reflected by vegetation, atmospheric longwave, and longwave emitted by vegetation. Potential or extraterrestrial shortwave irradiation theory was used to compute beam shortwave radiation received at the stream centerline, and view factor theory was used to compute diffuse radiation exchange among stream, vegetation, and atmospheric planes. Model shade effects under clear skies were dominated by reductions in receipt of direct beam shortwave radiation. Model shade effects with cloudy skies were dominated by the “view factor effect” or the decreases in diffuse shortwave and longwave radiation from the atmosphere balanced against increases in longwave radiation from vegetation. Model shade effects on shortwave radiation reflected by vegetation were found to be negligible. The model was used to determine the vegetation height (H) to stream width (W) ratios needed to achieve 50, 75, and 90 % shade restoration for mid‐latitude conditions on clear and cloudy days. Ratios of vegetation height to stream width, for dense nontransmitting vegetation, generally ranged from 1.4 to 2.3 for 75% shade restoration at a mid‐latitude site (40°N). The model was used to show H/W needed for E‐W vs. N‐S stream azimuths, varying stream latitudes between 30° and 50°N, channels with overhanging vegetation, channels undergoing width changes, as well as the limits to shade restoration on very wide channels.  相似文献   

14.
Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine grained sediment emanating from upland and channel erosion. A recent study showed that the Upper Truckee River is the single largest contributor of sediment to Lake Tahoe, with a large proportion of the sediment load emanating from streambanks. This study combines field data with numerical modeling to identify the critical conditions for bank stability along an unstable reach of the Upper Truckee River, California. Bank failures occur during winter and spring months, brought on by repeated basal melting of snow packs and rain‐on‐snow events. Field studies of young lodgepole pines and Lemmon's willow were used to quantify the mechanical, hydrologic, and net effects of riparian vegetation on streambank stability. Lemmon's willow provided an order of magnitude more root reinforcement (5.5 kPa) than the lodgepole pines (0.5 kPa); the hydrologic effects of the species varied spatially and temporally and generally were of a smaller magnitude than the mechanical effects. Overall, Lemmon's willow provided a significant increase in bank strength, reducing the frequency of bank failures and delivery of fine grained sediment to the study reach of the Upper Truckee River.  相似文献   

15.
Riparian ecosystems are designated for special protection from development and disturbance at Lake Tahoe. The Tahoe Regional Planning Agency (TRPA) required protection of Stream Environment Zones (SEZs) in its Regional Plan for the Lake Tahoe Basin in 1987. These zones are identified by the presence of key indicators such as the evidence of surface water flow, riparian vegetation, near‐surface ground water, designated floodplain, and alluvial soils. They are mapped on each potential building site and assigned a setback that is also off limits to building construction. The SEZs are protected to maintain their functions and values, including flood attenuation, water quality enhancement, and wildlife habitat. Strict regulations control use or disturbance of SEZs on public and private property throughout the watershed. The TRPA has set restoration targets to increase the acreage of naturally functioning SEZs in the Tahoe Basin. Many SEZ restoration projects have been designed and implemented, but SEZ restoration targets have not been met. More SEZ restoration projects are being designed and funded each year. Restoration designers would benefit from increased effectiveness monitoring of completed projects and Web‐based dissemination of monitoring results.  相似文献   

16.
Abstract: Stream and riparian managers must effectively allocate limited financial and personnel resources to monitor and manage riparian ecosystems. They need to use management strategies and monitoring methods that are compatible with their objectives and the response potential of each stream reach. Our objective is to help others set realistic management objectives by comparing results from different methods used to document riparian recovery across a diversity of stream types. The Bureau of Land Management Elko Field Office, Nevada, used stream survey, riparian proper functioning condition (PFC) assessment, repeat photographic analysis, and stream and ecological classification to study 10 streams within the Marys River watershed of northeast Nevada during all or parts of 20 years. Most riparian areas improved significantly from 1979 to 1992‐1993 and then additionally by 1997‐2000. Improvements were observed in riparian and habitat condition indices, bank cover, and stability, pool quality, bank angle, and depth of undercut bank. Interpretation of repeat photography generally confirmed results from stream survey and should be part of long‐term riparian monitoring. More attributes of Rosgen stream types C and E improved than of types B and F. A and Gc streams did not show significant improvement. Alluvial draws and alluvial valleys improved in more ways than V‐erosional canyons and especially V‐depositional canyons. Stream survey data could not be substituted for riparian PFC assessment. Riparian PFC assessments help interpret other data.  相似文献   

17.
Abstract: Airborne thermal remote sensing from four flights on a single day from a single‐engine airplane was used to collect thermal infrared data of a 10.47‐km reach of the upper East Branch Pecatonica River in southwest Wisconsin. The study uses a one‐dimensional stream temperature model calibrated with the longitudinal profiles of stream temperature created from the four thermal imaging flights and validated with three days of continuous stream temperature data from instream data loggers on the days surrounding the thermal remote‐sensing campaign. Model simulations were used to quantify the sensitivity of stream thermal habitat to increases in air and groundwater temperature and changes in base flow. The simulations indicate that stream temperatures may reach critical maximum thresholds for brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) mortality, particularly if both air temperature increases and base flow declines. The approach demonstrates that thermal infrared data can greatly assist stream temperature model validation due to its high spatial resolution, and that this spatially continuous stream temperature data can be used to pinpoint spatial heterogeneity in groundwater inflow to streams. With this spatially distributed data on thermal heterogeneity and base‐flow accretion, stream temperature models considering various climate change scenarios are able to identify thermal refugia that will be critical for fisheries management under a changing climate.  相似文献   

18.
Riparian areas of large streams provide important habitat to many species and control many instream processes — but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from other regions and if there are consequences for management from any differences. In the moist forests along many small streams of the Pacific Northwest, the contrast between the streamside and upslope forest is not as strong as that found in drier regions. Small streams typically lack floodplains, and the riparian area is often constrained by the hillslope. Nevertheless, riparian‐associated organisms, some unique to headwater areas, are found along small streams. Disturbance of hillslopes and stream channels and microclimatic effects of streams on the riparian area provide great heterogeneity in processes and diversity of habitats. The tight coupling of the terrestrial riparian area with the aquatic system results from the closed canopy and high edge‐to‐area ratio for small streams. Riparian areas of the temperate, conifer dominated forests of the Pacific Northwest provide a unique environment. Forest management guidelines for small streams vary widely, and there has been little evaluation of the local or downstream consequences of forest practices along small streams.  相似文献   

19.
DeWalle, David R., 2010. Modeling Stream Shade: Riparian Buffer Height and Density as Important as Buffer Width. Journal of the American Water Resources Association (JAWRA) 46(2):323-333. DOI: 10.1111/j.1752-1688.2010.00423.x Abstract: A theoretical model was developed to explore impacts of varying buffer zone characteristics on shading of small streams using a path-length form of Beer’s law to represent the transmission of direct beam solar radiation through vegetation. Impacts of varying buffer zone height, width, and radiation extinction coefficients (surrogate for buffer density) on shading were determined for E-W and N-S stream azimuths in infinitely long stream sections at 40°N on the summer solstice. Increases in buffer width produced little additional shading beyond buffer widths of 6-7 m for E-W streams due to shifts in solar beam pathway from the sides to the tops of the buffers. Buffers on the north bank of E-W streams produced 30% of daily shade, while the south-bank buffer produced 70% of total daily shade. For N-S streams an optimum buffer width was less-clearly defined, but a buffer width of about 18-20 m produced about 85-90% of total predicted shade. The model results supported past field studies showing buffer widths of 9-11 m were sufficient for stream temperature control. Regardless of stream azimuth, increases in buffer height and extinction coefficient (buffer density) were found to substantially increase shading up to the maximum tree height and stand density likely encountered in the field. Model results suggest that at least 80% shade on small streams up to 6-m wide can be achieved in mid-latitudes with relatively narrow 12-m wide buffers, regardless of stream azimuth, as long as buffers are tall (≈30 m) and dense (leaf area index ≈6). Although wide buffers may be preferred to provide other benefits, results suggest that increasing buffer widths beyond about 12 m will have a limited effect on stream shade at mid-latitudes and that greater emphasis should be placed on the creation of dense, tall buffers to maximize stream shading.  相似文献   

20.
ABSTRACT: Land cover and land use change have long been known to influence the chemical, physical, and biological characteristics of streams. This study makes use of land cover maps derived from fine resolution satellite imagery and an extensive stream quality dataset to determine the relationship between small watershed health rankings and land cover composition and configuration. Landscape metrics were derived from digital impervious surface area (ISA), tree cover (percent), and agricultural crop maps within Montgomery County, Maryland. Watershed rankings were developed by state and county collaborators (MD‐DNR and MCDEP) using extensive biological and chemical measurements. In stepwise logistic regression models the factors accounting for the most variation in stream health ranking were the percent ISA, followed by the percent of tree cover. Riparian buffer zone tree cover was also a significant predictor. Of the metrics that considered the spatial configuration of the landscape, a contagion index and the percent of ISA in the flow path from the ISA to the stream were also found to be significant predictors of stream health. Despite limited ability to characterize landscape configuration or narrow riparian buffer zone vegetation with coarser resolution imagery (from Landsat), model results were not significantly different from those based on the use of fine‐resolution ISA information, suggesting that broader area applications of the approach are possible. The results indicate that management practices designed to improve stream water quality should focus on the amount of ISA and tree cover in both the watershed and within the buffer zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号