首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   3篇
  2009年   1篇
  1995年   2篇
排序方式: 共有3条查询结果,搜索用时 10 毫秒
1
1.
ABSTRACT: We evaluated the effects of institutional responses developed for coping with a severe sustained drought (SSD) in the Colorado River Basin on selected system variables using a SSD inflow hydrology derived from the drought which occurred in the Colorado River basin from 1579–1616. Institutional responses considered are reverse equalization, salinity reduction, minimum flow requirements, and temporary suspension of the delivery obligation of the Colorado River Compact. Selected system variables (reservoir contents, streamflows, consumptive uses, salinity, and power generation) from scenarios incorporating the drought-coping responses were compared to those from Baseline conditions using the current operating criteria. The coping responses successfully mitigated some impacts of the SSD on consumptive uses in the Upper Basin with only slight impacts on consumptive uses in the Lower Basin, and successfully maintained specified minimum streamflows throughout the drought with no apparent effect on consumptive uses. The impacts of the coping responses on other system variables were not as clear cut. We also assessed the effects of the drought-coping responses to normal and wet hydrologic conditions to determine if they were overly conservative. The results show that the rules would have inconsequential effects on the system during normal and wet years.  相似文献   
2.
Paech, Simon J., John R. Mecikalski, David M. Sumner, Chandra S. Pathak, Quinlong Wu, Shafiqul Islam, and Taiye Sangoyomi, 2009. A Calibrated, High‐Resolution GOES Satellite Solar Insolation Product for a Climatology of Florida Evapotranspiration. Journal of the American Water Resources Association (JAWRA) 45(6):1328‐1342. Abstract: Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10‐year period (1995‐2004). These insolation estimates were developed into well‐calibrated half‐hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2‐week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground‐based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three‐step process: (1) comparison with ground‐based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station‐averaged model error of 2.2 MJ m?2/day (13%). Calibration reduced errors to 1.7 MJ m?2/day (10%), and also removed temporal‐related, seasonal‐related, and satellite sensor‐related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2‐km resolution maps of estimated daily reference and potential evapotranspiration for water management‐related activities.  相似文献   
3.
ABSTRACT: The impacts of a severe sustained drought on Colorado River system water resources were investigated by simulating the physical and institutional constraints within the Colorado River Basin and testing the response of the system to different hydrologic scenarios. Simulations using Hydrosphere's Colorado River Model compared a 38-year severe sustained drought derived from 500 years of reconstructed streamflows for the Colorado River basin with a 38-year streamflow trace extracted from the recent historic record. The impacts of the severe drought on streamflows, water allocation, storage, hydropower generation, and salinity were assessed. Estimated deliveries to consumptive uses in the Upper Basin states of Colorado, Utah, Wyoming, New Mexico, and northern Arizona were heavily affected by the severe drought, while the Lower Basin states of California, Nevada, and Arizona suffered only slight shortages. Upper Basin reservoirs and streamflows were also more heavily affected than those in the Lower Basin by the severe drought. System-wide, total hydropower generation was 84 percent less in the drought scenario than in the historical stream-flow scenario. Annual, flow-weighted salinity below Lake Mead exceeded 1200 ppm for six years during the deepest portion of the severe drought. The salinity levels in the historical hydrology scenario never exceeded 1100 ppm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号