首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

2.
Chang R  Fu B  Liu G  Liu S 《Environmental management》2011,48(6):1158-1172
Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau, and it is recommended to expand grassland and shrub areas in the northern Loess Plateau and forest in the middle and southern Loess Plateau to enhance the SOC sequestration in this area.  相似文献   

3.
Land use and ecosystem services need to be assessed simultaneously to better understand the relevant factors in sustainable land management. This paper analyzed land use changes in the middle reach of the arid Heihe River Basin in northwest China over the last two decades and their impacts on water resources and soil organic carbon (SOC) storage. The results indicated that from 1986 to 2007: (1) cropland and human settlements expanded by 45.0 and 17.6 %, respectively, at the expense of 70.1, 35.7, and 4.1 % shrinkage on woodland, grassland, and semi-shrubby desert; (2) irrigation water use was dominant and increased (with fluctuations) at an average rate of 8.2 %, while basic human water consumption increased monotonically over a longer period from 1981 to 2011 at a rate of 58 %; and (3) cropland expansion or continuous cultivation led to a significant reduction of SOC, while the land use transition from grassland to semi-shrubby desert and the progressive succession of natural ecosystems such as semi-shrubby desert and grassland, in contrast, can bring about significant carbon sequestration benefits. The increased water consumption and decreased SOC pool associated with some observed land use changes may induce and aggravate potential ecological risks for both local and downstream ecosystems, including water resource shortages, soil quality declines, and degeneration of natural vegetation. Therefore, it is necessary to balance socioeconomic wellbeing and ecosystem services in land use planning and management for the sustainability of socio-ecological systems across spatiotemporal scales, especially in resource-poor arid environments.  相似文献   

4.
This study investigated the effects of grassland conversion to croplands on soil organic carbon (SOC) in a typical grassland-dominated basin of the Inner Mongolia using direct field samplings. The results indicated that SOC contents decreased usually with increasing soil depth, with significant differences between the upper horizons (0-30cm) and the underlying horizons (30-100cm). Also, SOC densities decreased with an increase in the depth of soils. Average SOC densities in the upper horizons were 2.6-3.7 and 6.0-8.3kgCm(-2) for desert grassland-cropland sites (sites 1 and 2) and meadow-cropland sites (sites 3 and 4), respectively, with significant differences between grasslands and croplands (P<0.05). However, the SOC densities in the underlying horizons did not significantly differ between the land uses. The SOC densities up to 100cm depth were much higher in the meadow-cropland sites than in the desert grassland-cropland sites, reaching approximately 16 and 6kgCm(-2), respectively. The SOC: total nitrogen (TN) ratios were approximately 10, with no significant difference among the soil horizons of grasslands and croplands. The conversion of grasslands to croplands induced a slight loss of SOC, with a range of from -4% to 22% for the 0-100cm soil depth over about a 35-year period, in the temperate Inner Mongolia.  相似文献   

5.
Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha?1 year?1 to 5.4 Mg C ha?1 year?1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0–96.3 ± 6.0 Mg C ha?1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha?1 year?1 and 45.8 ± 3.5 Mg C ha?1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha?1 year?1) and fertilizer use (63.6 kg Ce ha?1 year?1) for all sites totaled 254.3 kg Ce ha?1 year?1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year?1 under low management regimes and 7551.4 Gg Ce year?1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.  相似文献   

6.
Following turfgrass establishment, soils sequester carbon (C) over time. However, the magnitude of this sequestration may be influenced by a range of climatic and soil factors. Analysis of home lawn turfgrass soils throughout the United States indicated that both climatic and soil properties significantly affected the soil organic carbon (SOC) concentration and pool to 15-cm depth. Soil sampling showed that the mean annual temperature (MAT) was negatively correlated with SOC concentration. Additionally, a nonlinear interaction was observed between mean annual precipitation (MAP) and SOC concentration with optimal sequestration occurring in soils receiving 60–70?cm of precipitation per year. Furthermore, soil properties also influenced SOC concentration. Soil nitrogen (N) had a high positive correlation with SOC concentration, as a 0.1?% increase in N concentration led to a 0.99?% increase in SOC concentration. Additionally, soil bulk density (ρb) had a curvilinear interaction with SOC concentration, with an increase in ρb indicating a positive effect on SOC concentration until a ρb of ~1.4–1.5?Mg?m?3 was attained, after which, inhibition of SOC sequestration occurred. Finally, no correlation between SOC concentration or pool was observed with texture. Based upon these results, highest SOC pools within this study are observed in regions of low MAT, moderate MAP (60–70?cm?year?1), high soil N concentration, and moderate ρb (1.4–1.5?Mg?m?3). In order to maximize the C storage capacity of home lawns, non C-intensive management practices should be used to maintain soils within these conditions.  相似文献   

7.
Carbon Sequestration in Dryland Ecosystems   总被引:8,自引:0,他引:8  
Drylands occupy 6.15 billion hectares (Bha) or 47.2% of the worlds land area. Of this, 3.5 to 4.0 Bha (57%–65%) are either desertified or prone to desertification. Despite the low soil organic carbon (SOC) concentration, total SOC pool of soils of the drylands is 241 Pg (1 Pg = petagram = 1015 g = 1 billion metric ton) or 15.5% of the worlds total of 1550 Pg to 1-meter depth. Desertification has caused historic C loss of 20 to 30 Pg. Assuming that two-thirds of the historic loss can be resequestered, the total potential of SOC sequestration is 12 to 20 Pg C over a 50-year period. Land use and management practices to sequester SOC include afforestation with appropriate species, soil management on cropland, pasture management on grazing land, and restoration of degraded soils and ecosystems through afforestation and conversion to other restorative land uses. Tree species suitable for afforestation in dryland ecosystems include Mesquite, Acacia, Neem and others. Recommended soil management practices include application of biosolids (e.g., manure, sludge), which enhance activity of soil macrofauna (e.g., termites), use of vegetative mulches, water harvesting, and judicious irrigation systems. Recommended practices of managing grazing lands include controlled grazing at an optimal stocking rate, fire management, and growing improved species. The estimated potential of SOC sequestration is about 1 Pg C/y for the world and 50 Tg C/y for the U.S. This potential of dryland soils is relevant to both the Kyoto Protocol under UNFCCC and the U.S. Farm Bill 2002.
  相似文献   

8.
The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0–15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO4–oxidation C), C management index (CMI) and inorganic C (CaCO3–C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO3 enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0–87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09–0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C sequestration reached up to 1.8–9.4 and 7.5–17.3 Mg ha?1 at the 0–15 cm layer over a 7- and 32-year rehabilitation period compared to the control site, suggesting that desertification control has a great potential for sequestering soil C and improving soil quality in northwest China.  相似文献   

9.
Estimates of potential and actual C sequestration require areal information about various types of management activities. Forest surveys, land use data, and agricultural statistics contribute information enabling calculation of the impacts of current and historical land management on C sequestration in biomass (in forests) or in soil (in agricultural systems). Unfortunately little information exists on the distribution of various management activities that can impact soil C content in grassland systems. Limited information of this type restricts our ability to carry out bottom-up estimates of the current C balance of grasslands or to assess the potential for grasslands to act as C sinks with changes in management. Here we review currently available information about grassland management, how that information could be related to information about the impacts of management on soil C stocks, information that may be available in the future, and needs that remain to be filled before in-depth assessments may be carried out. We also evaluate constraints induced by variability in information sources within and between countries.It is readily apparent that activity data for grassland management is collected less frequently and on a coarser scale than data for forest or agricultural inventories and that grassland activity data cannot be directly translated into IPCC-type factors as is done for IPCC inventories of agricultural soils. However, those management data that are available can serve to delineate broad-scale differences in management activities within regions in which soil C is likely to change in response to changes in management. This, coupled with the distinct possibility of more intensive surveys planned in the future, may enable more accurate assessments of grassland C dynamics with higher resolution both spatially and in the number management activities.  相似文献   

10.
National-scale inventories of soil organic carbon (SOC) and forest floor carbon (FFC) stocks have a high uncertainty. Inventories are often based on the interpolation of sampled information, often using a number of covariables to help such interpolation. The rationale for the choice of these covariables is not always documented, despite the fact that many local-scale studies have identified the factors explaining spatial variability of SOC and FFC stocks. These studies indicate, among others the importance of long-term land use history. Despite this, information on the effects of land use history has never been used to explain variability of carbon stocks in national-scale inventories. We designed an alternative method to improve national-scale inventories of SOC and FCC for the Dutch sand area that takes stock of the findings of detailed case studies. Determinants for SOC and FFC stocks derived from landscape-scale case studies were used to map national-scale spatial variability and to calculate national totals. The resulting national-scale spatial distribution was compared with the SOC stock map from the current Dutch greenhouse gas inventory. Using land use history to explain SOC variability decreased the error of the SOC stock estimate in 60 % of the area. The error in FFC stocks decreased in half of the forest area after including soil fertility, tree species, and forest age as explanatory factors. Estimates with reduced uncertainty will make land use and land management a more attractive and acceptable mitigation option to reduce emissions of greenhouse gases for the LULUCF sector.  相似文献   

11.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

12.
Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10?cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH4 +-N and NO3 ?-N. However, soil IN pools were dominated by NH4 +-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH4 +-N concentration and decreases NO3 ?-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH4 +-N and NO3 ?-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH4 +-N and NO3 ?-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH4 +-N were measured at the upper slopes of all sites, but NO3 ?-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH4 +-N and NO3 ?-N concentrations. Options for improved soil management in plantations are discussed.  相似文献   

13.
This study investigated human-induced long-term wetland degradation that occurred in the Sanjiang Plain. Results from analyzing land-use/land-cover data sets derived from remotely sensed Landsat Multispectral Scanner/Thematic Mapper imagery for four time points showed that wetlands in the Sanjiang Plain have been severely transformed, and the area of wetlands decreased by 38 % from 1976 to 1986, by 16 % from 1986 to 1995, and by 31 % from 1995 to 2005. This study showed that transition to agricultural cultivation accounted for 91 % of wetland losses, whereas transition to grassland and forest accounted for 7 % of the wetlands losses. Institutional strategies and market policies probably exerted great impacts on agricultural practice that directly or indirectly influenced the decrease in wetlands. This study also indicated that an increased population likely led to wetland conversion to cropland by showing a high correlation between population and cropland (R 2 = 0.92, P < 0.001). Wetland loss occurred during later time intervals at a low rate. This study suggests that the existing wetland-protection measures in the Sanjiang Plain should be reinforced further because of possible environmental consequences of wetland loss, such as enhanced soil carbon emission, changed hydrological cycling, and regional temperature increase.  相似文献   

14.
This study addressed the effects of land use and slope position on soil inorganic nitrogen and was conducted in small watersheds. The study covered three land use types: tropical cloud forest, grassland, and coffee crop. To conduct this research, typical slope small watersheds were chosen in each land use type. Slopes were divided into three positions: shoulder, backslope, and footslope. At the center of each slope position, soil sampling was carried out. Soil inorganic nitrogen was measured monthly during a period of 14 months (July 2005–August 2006) with 11 observations. Significant differences in soil NH4 +–N and NO3 –N content were detected for both land use and sampling date effects, as well as for interactions. A significant slope position-by-sampling date interaction was found only in coffee crop for NO3 –N content. In tropical cloud forest and grassland, high soil NH4 +–N and low NO3 –N content were recorded, while soil NO3 –N content was high in coffee crop. Low NO3 –N contents could mean a substantial microbial assimilation of NO3 –N, constituting an important mechanism for nitrogen retention. Across the entire land use set, the relationship between soil temperature and soil inorganic N concentration was described by an exponential decay function (N = 33 + 2459exp−0.23T, R 2 = 0.44, P < 0.0001). This study also showed that together, soil temperature and gravimetric soil water content explained more variation in soil inorganic N concentration than gravimetric soil water content alone.  相似文献   

15.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   

16.
Plant–soil interactions are known to influence a wide range of ecosystem-level functions. Moreover, the recovery of these functions is of importance for the successful restoration of soils that have been degraded through intensive and/or inappropriate land use. Here, we assessed the effect of planting treatments commonly used to accelerate rates of grassland restoration, namely introduction of different legume species Medicago sativa, Astragalus adsurgens, Melilotus suaveolens, on the recovery of soil microbial communities and carbon and nitrogen contents in abandoned fields of the Loess Plateau, China. The results showed effects were species-specific, and either positive, neutral or negative depending on the measure and time-scale. All legumes increased basal respiration and metabolic quotient and had a positive effect on activity and functional diversity of the soil microbial community, measured using Biolog EcoPlate. However, soil under Astragalus adsurgens had the highest activity and functional diversity relative to the other treatments. Soil carbon and nitrogen content and microbial biomass were effectively restored in 3–5?years by introducing Medicago sativa and Astragalus adsurgens into early abandoned fields. Soil carbon and nitrogen content were retarded in 3–5?years and microbial biomass was retarded in the fifth year by introducing Melilotus suaveolens. Overall, the restoration practices of planting legumes can significantly affect soil carbon and nitrogen contents, and the biomass, activity, and functional diversity of soil microbial community. Therefore, we propose certain legume species could be used to accelerate ecological restoration of degraded soils, hence assist in the protection and preservation of the environment.  相似文献   

17.
We examined long-term (10 years) meadow plant community responses to (1) livestock grazing under riparian grazing utilization limits; (2) suspension of livestock grazing; and (3) meadow site wetness and precipitation on the Inyo National Forest, California. Observed trends in meadow plant species richness, diversity, and frequency of soil stabilizing species were not significantly different between grazed (N = 16) and non-grazed (N = 9) study sites (P > 0.12 in all cases). Modest increases in richness and diversity were observed over the study period, but frequency of soil stabilizing species was constant. These results suggest that riparian conservation grazing strategies implemented during the study period neither degraded nor hampered recovery of meadow plant community conditions relative to non-grazed conditions. Meadow site wetness was negatively correlated to richness (P < 0.01) and diversity (P < 0.01), but was positively correlated to soil stabilization (P = 0.02). Precipitation was not a significant predictor for plant community responses.  相似文献   

18.
Abstract: Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land‐use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest region of southeastern Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un‐mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds, and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds were analyzed using Monte Carlo mass balance un‐mixing and it was found that: δ15N showed the ability to differentiate streambank erosion and surface soil erosion; and δ13C showed the ability to differentiate soil organic matter and geogenic organic matter. Results from the analyses suggest that streambank erosion downstream of surface coal mining sites is an especially significant source of sediment in coal mining disturbed watersheds. Further, the results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes. The dual‐isotope technique provides a useful method for further investigation of the impact of surface coal mining in the uplands of the watershed upon the geomorphologic state of the channel and the source of organic matter in aquatic systems impacted by surface coal mining.  相似文献   

19.
Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha?1 month?1; light (LG), 0.15 sheep ha?1 month?1; moderate (MG), 0.30 sheep ha?1 month?1; and heavy (HG), 0.45 sheep ha?1 month?1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased (P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May–July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease (P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase (P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower (P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.  相似文献   

20.
Many recreation impact studies have focused on summer activities, but the environmental impact of winter recreation is poorly characterized. This study characterizes the impact of snowshoe/cross-country ski compaction and snowmelt erosion on trails. Trail cross-sectional profiles were measured before and after the winter season to map changes in erosion due to winter recreation. Compacted snow on the trail was 30 % more dense than snowpack off the trail before spring melt out. Snow stayed on the trail 7 days longer. Soil and organic material was transported after spring snowmelt with ?9.5 ± 2.4 cm2 total erosion occurring on the trail transects and ?3.8 ± 2.4 cm2 total erosion occurring on the control transect (P = 0.046). More material was transported on the trail than on the control, 12.9± 2.4 versus 6.0 ± 2.4 cm2 (P = 0.055), however, deposition levels remained similar on the trail and on the control. Snow compaction from snowshoers and cross-country skiers intensified erosion. Trail gradient was found to be significantly correlated to net changes in material on the trail (R 2 = 0.89, ρ = ?0.98, P = 0.005). This study provides a baseline, showing that non-motorized winter recreation does impact soil erosion rates but more studies are needed. Trail managers should consider mitigation such as water bars, culverts and avoiding building trails with steep gradients, in order to reduce loss of soils on trails and subsequent sedimentation of streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号