首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We present four reconstruction estimates of Arkansas River baseflow and streamflow using a total of 78 tree-ring chronologies for three streamflow gages, geographically spanning the headwaters in Colorado to near the confluence of the Arkansas-Mississippi rivers. The estimates represent different seasonal windows, which are dictated by the shared limiting forcing of precipitation on seasonal tree growth and soil moisture—and subsequently on the variability of Arkansas River discharge. Flow extremes that were higher and lower than what has been observed in the instrumental era are recorded in each of the four reconstructions. Years of concurrent, cross-basin (all sites) low flow appear more frequently during the 20th and 21st Centuries compared to any period since 1600 A.D., however, no significant trend in cross-basin low flow is observed. As the most downstream major tributary of the Mississippi River, the Arkansas River directly influences flood risk in the Lower Mississippi River Valley. Estimates of extreme high flow in downstream reconstructions coincide with specific years of historic flooding documented in New Orleans, Louisiana, just upstream of the Mississippi River Delta. By deduction, Mississippi River flooding in years of low Arkansas River flow imply exceptional flooding contributions from the Upper Mississippi River catchments.  相似文献   

2.
We developed Columbia River streamflow reconstructions using a network of existing, new, and updated tree‐ring records sensitive to the main climatic factors governing discharge. Reconstruction quality is enhanced by incorporating tree‐ring chronologies where high snowpack limits growth, which better represent the contribution of cool‐season precipitation to flow than chronologies from trees positively sensitive to hydroclimate alone. The best performing reconstruction (back to 1609 CE) explains 59% of the historical variability and the longest reconstruction (back to 1502 CE) explains 52% of the variability. Droughts similar to the high‐intensity, long‐duration low flows observed during the 1920s and 1940s are rare, but occurred in the early 1500s and 1630s‐1640s. The lowest Columbia flow events appear to be reflected in chronologies both positively and negatively related to streamflow, implying low snowpack and possibly low warm‐season precipitation. High flows of magnitudes observed in the instrumental record appear to have been relatively common, and high flows from the 1680s to 1740s exceeded the magnitude and duration of observed wet periods in the late‐19th and 20th Century. Comparisons between the Columbia River reconstructions and future projections of streamflow derived from global climate and hydrologic models show the potential for increased hydrologic variability, which could present challenges for managing water in the face of competing demands.  相似文献   

3.
In water stressed regions, water managers are exploring new horizons that would help in long‐range streamflow forecasts. Oceanic‐atmospheric oscillations have been shown to influence streamflow variability. In this study, long‐lead time streamflow forecasts are made using a multiclass kernel‐based data‐driven support vector machine (SVM) model. The extended streamflow records based on tree ring reconstructions were used to provide a longer time series data. Reconstructed data were used from 1658 to 1952 and the instrumental record was used from 1953 to 2007. Reconstructions for oceanic‐atmospheric oscillations included the El Niño‐Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation. Streamflow forecasts using all four oscillations were made with one‐year to five‐year lead times for 21 gages in the western United States. This is the first study that uses both instrumental and reconstructed data of oscillations in SVM model to improve streamflow forecast lead time. SVM model was able to provide “satisfactory” to “very good” forecasts with one‐ to five‐year lead time for the selected gages. The use of all the oscillation indices helped in achieving better predictability compared to using individual oscillations. The SVM modeling results are better when compared with multiple linear regression model forecasts. The findings are statistical in nature and are expected to be useful for long‐term water resources planning and management.  相似文献   

4.
Anderson, SallyRose, Glenn Tootle, and Henri Grissino‐Mayer, 2012. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree‐Ring Chronologies. Journal of the American Water Resources Association (JAWRA) 48(4): 849‐858. DOI: 10.1111/j.1752‐1688.2012.00651.x Abstract: Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. We used tree‐ring chronologies to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k‐nearest neighbor techniques. We correlated moisture sensitive tree‐ring chronologies in and adjacent to the UCRB with regional soil moisture and tested the relationships for temporal stability. Chronologies that were positively correlated and stable for the calibration period were retained. We used stepwise linear regression to identify the best predictor combinations for each soil moisture region. The regressions explained 42‐78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained more variance in the datasets. Reconstructed soil moisture data was standardized and compared with standardized reconstructed streamflow and snow water equivalent data from the same region. Soil moisture and other hydrologic variables were highly correlated, indicating reconstructions of soil moisture in the UCRB using tree‐ring chronologies successfully represent hydrologic trends.  相似文献   

5.
Gray, Stephen T., Jeffrey J. Lukas, and Connie A. Woodhouse, 2011. Millennial‐Length Records of Streamflow From Three Major Upper Colorado River Tributaries. Journal of the American Water Resources Association (JAWRA) 47(4):702‐712. DOI: 10.1111/j.1752‐1688.2011.00535.x Abstract: Drought, climate change, and shifting consumptive use are prompting a widespread reassessment of water availability in the Upper Colorado River basin. Here, we present millennial‐length records of water year (October‐September) streamflow for key Upper Colorado tributaries: the White, Yampa, and Little Snake Rivers. Based on tree rings, these records represent the first paleohydrological reconstructions from these subbasins to overlap with a series of Medieval droughts (∼ad 800 to 1300). The reconstructions show marked interannual variability imbedded in nonstationary behavior over decadal to multidecadal time scales. These reconstructions suggest that, even in a millennial context, gaged flows from a handful of years (e.g., 1977 and 2002) were extremely dry. However, droughts of much greater duration and magnitude than any in the instrumental record were regular features prior to 1900. Likewise these reconstructions point to the unusual wetness of the gage period, and the potential for recent observations to paint an overly optimistic picture of regional water supplies. The future of the Upper Colorado River will be determined by a combination of inherent hydroclimatic variability and a broad range of human‐induced changes. It is then essential that regional water managers, water users, and policy makers alike consider a broader range of hydroclimatic scenarios than is offered by the gage record alone.  相似文献   

6.
The article presents nonparametric methods based on K nearest neighbors (KNNs), modified KNNs, and local polynomial techniques to reconstruct streamflow ensembles from tree‐ring data in Filyos River region (Turkey). Three methods were tested using cross‐validation for the overlap period, 1963‐1997 for which the tree‐ring and streamflow data are available. It was found that for the study where the length of the overlap period was limited, a nonparametric method based on a local polynomial technique provides simulations that have a slightly better solution than the other methods. After verification using standard statistical techniques, these methods were utilized to develop streamflow reconstructions from tree‐ring data for the paleo‐hydrologic period (1657‐1963). These reconstructions of seasonal low and high flows were discussed with the obtained flood duration curve. They were also compared with the historical archives and other tree‐ring reconstructions data available in the same river. Overall, the utility and limitations of these methods and the resulting streamflow simulations were discussed to assess the long‐term discharge behavior of Filyos River and to evaluate water supply reliability.  相似文献   

7.
Droughts constitute one of the most important factors affecting the design and operation of water resources infrastructure. Hydrologists ascertain their duration, severity, and pattern of recurrence from instrumental records of precipitation or stream‐flow. Under suitable conditions, and with proper analysis, tree rings obtained from long living, climate sensitive species of trees can extend instrumental records of streamflow and precipitation over periods spanning several centuries. Those tree‐ring “reconstructions” provide a valuable insight about climate variability and drought occurrence in the Holocene, and yield long term hydrological data useful in the design of water infrastructure. This work presents a derivation of drought risk based on a renewal model of drought recurrence, a brief review of the basic theory of tree‐ring reconstructions, and a stochastic model for optimizing the design of water supply reservoirs. Examples illustrate the methodology developed in this work and the supporting role that tree‐ring reconstructed streamflow can play in characterizing hydrologic variability.  相似文献   

8.
ABSTRACT: The Wyoming shield and dual-gage measuring systems were developed to measure all precipitation, but more specifically snowfall under windy conditions. Results of a study at five sites on the Reynolds Creek Experimental Watershed in southwest Idaho indicate that gages with Wyoming shields and the dual-gage system measured the same amount when air temperatures were higher than ?2.2°C. Precipitation amounts computed from the dual. gage system were slightly more than from gages with Wyoming shields for snowfall, especially under windy conditions. Results also show how well the Alter shielded and unshielded gages used in the dual-gage system represent the computed catch if data were only available from one or the other of the gages.  相似文献   

9.
Throughfall was measured during 1978–79 beneath the canopies of adjacent stands of four major southern pine species, all on identical soil type and topography in the Stephen F. Austin Experimental Forest. Observations from 44 storms in a randomized network of 15, 5.08 cm PVC gages in a 0.4 ha plot of each species showed that throughfall expressed as percent of storm precipitation, is greatest under longleaf pine and least under loblolly pine; throughfall under shortleaf and slash pine did not differ significantly. Generally, through-fall decreased with storm size and intensity, with distance from the nearest tree stem, and is greater during summer half-year (May–October). Canopy drips, apparently accounting for the greater throughfall for the gage position closer to the stems, were more numerous than reported elsewhere. The 5.08 cm PVC gages proved to be acceptable substitutes for standard nonrecording gages in measuring throughfall. A network of 15 such gages was sufficient to sample throughfall data with 90 percent accuracy in each of the four southern pine plantations.  相似文献   

10.
ABSTRACT: Water resource planning is based primarily on 20th century instrumental records of climate and streamflow. These records are limited in length to approximately 100 years, in the best cases, and can reflect only a portion of the range of natural variability. The instrumental record neither can be used to gage the unusualness of 20th Century extreme low flow events, nor does it allow the detection of low‐frequency variability that may underlie short‐term variations in flow. In this study, tree rings are used to reconstruct mean annual streamflow for Middle Boulder Creek in the Colorado Front Range, a semi‐arid region of rapid growth and development. The reconstruction is based on a stepwise regression equation that accounts for 70 percent of the variance in the instrumental record, and extends from 1703–1987. The reconstruction suggests that the instrumental record of streamflow for Middle Boulder Creek is not representative of flow in past centuries and that several low flow events in the 19th century were more persistent than any in the 20th century. The 1840s to early 1850s period of low flow is a particularly notable event and may have coincided with a period of low flow in the Upper Colorado River Basin.  相似文献   

11.
Abstract: Long‐term flow records for watersheds with minimal human influence have shown trends in recent decades toward increasing streamflow at regional and national scales, especially for low flow quantiles like the annual minimum and annual median flows. Trends for high flow quantiles are less clear, despite recent research showing increased precipitation in the conterminous United States over the last century that has been brought about primarily by an increased frequency and intensity of events in the upper 10th percentile of the daily precipitation distribution – particularly in the Northeast. This study investigates trends in 28 long‐term annual flood series for New England watersheds with dominantly natural streamflow. The flood series are an average of 75 years in length and are continuous through 2006. Twenty‐five series show upward trends via the nonparametric Mann‐Kendall test, 40% (10) of which are statistically significant (p < 0.1). Moreover, an average standardized departures series for 23 of the study gages indicates that increasing flood magnitudes in New England occurred as a step change around 1970. The timing of this is broadly synchronous with a phase change in the low frequency variability of the North Atlantic Oscillation, a prominent upper atmospheric circulation pattern that is known to effect climate variability along the United States east coast. Identifiable hydroclimatic shifts should be considered when the affected flow records are used for flood frequency analyses. Special treatment of the flood series can improve the analyses and provide better estimates of flood magnitudes and frequencies under the prevailing hydroclimatic condition.  相似文献   

12.
ABSTRACT: This paper considers the risk of drought and develops drought scenarios for use in the study of severe sustained drought in the Southwestern United States. The focus is on the Colorado River Basin and regions to which Colorado River water is exported, especially southern California, which depends on water from the Colorado River. Drought scenarios are developed using estimates of unimpaired historic streamflow as well as reconstructions of streamflow based on tree ring widths. Drought scenarios in the Colorado River Basin are defined on the basis of annual flow at Lees Ferry. The risk, in terms of return period, of the drought scenarios developed, is assessed using stochastic models.  相似文献   

13.
Haucke, Jessica and Katherine A. Clancy, 2011. Stationarity of Streamflow Records and Their Influence on Bankfull Regional Curves. Journal of the American Water Resources Association (JAWRA) 47(6):1338–1347. DOI: 10.1111/j.1752‐1688.2011.00590.x Abstract: Bankfull regional curves, which are curves that establish relationships among channel morphology, discharge, drainage area, are used extensively for stream restoration. These curves are developed upon the assumption that streamflows maintain stationarity over the entire record. We examined this assumption in the Driftless Area of southwestern Wisconsin where agricultural soil retention practices have changed, and precipitation has increased since the 1970s. We developed a bankfull regional curve for this area using field surveys of bankfull channel performed during 2008‐2009 and annual series of peak streamflows for 10 rivers with streamflow records ranging from the 1930s to 2009. We found bankfull flows to correlate to a 1.1 return period. To evaluate gage data statistics, we used the sign test to compare our channel morphology to historic 1.5 return period discharge (Q1.5) for five time periods: 1959‐1972, 1973‐1992, 1993‐2008, 1999‐2008, and the 1959‐2008 period of record. Analysis of the historic gage data indicated that there has been a more than 30% decline in Q1.5 since 1959. Our research suggests that land conservation practices may have a larger impact on gaging station stationarity than annual precipitation changes do. Additionally, historic peak flow data from gages, which have records that span land conservation changes, may need to be truncated to represent current flow regimes.  相似文献   

14.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

15.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

16.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

17.
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin.  相似文献   

18.
Abstract: Growing populations, limited resources, and sustained drought are placing increased pressure on already over‐allocated water supplies in the western United States, prompting some water managers to seek out and utilize new forms of climate data in their planning efforts. One source of information that is now being considered by water resource management is extended hydrologic records from tree‐ring data. Scientists with the Western Water Assessment (WWA) have been providing reconstructions of streamflow (i.e., paleoclimate data) to water managers in Colorado and other western states (Arizona, New Mexico, and Wyoming), and presenting technical workshops explaining the applications of tree‐ring data for water management for the past eight years. Little is known, however, about what has resulted from these engagements between scientists and water managers. Using in‐depth interviews and a survey questionnaire, we attempt to address this lack of information by examining the outcomes of the interactions between WWA scientists and western water managers to better understand how paleoclimate data has been translated to water resource management. This assessment includes an analysis of what prompts water managers to seek out tree‐ring data, how paleoclimate data are utilized by water managers in both quantitative and qualitative ways, and how tree‐ring data are interpreted in the context of organization mandates and histories. We situate this study within a framework that examines the coproduction of science and policy, where scientists and resource managers collectively define and examine research and planning needs, the activities of which are embedded within wider social and political contexts. These findings have broader applications for understanding science‐policy interactions related to climate and climate change in resource management, and point to the potential benefits of reflexive interactions of scientists and decision makers.  相似文献   

19.
ABSTRACT: Wildfires in 1988 burned over 2000 square miles of the greater Yellowstone area in Montana and Wyoming in the largest fires in the history of Yellowstone National Park (YNP). A four-year postfire study to estimate fire-related changes in suspended sediment transport on the Yellowstone River and its principal tributary in YNP, the Lamar River, benefitted from a recently completed three-year prefire baseline study. Both studies took daily depth-integrated samples from April through September. Fire-related changes in suspended sediment were distinguished from natural climatic variations by two methods: comparison of forecast postfire sediment loads estimated with prefire sediment-rating equations to measured postfire loads; and by postfire changes in suspended sediment load expressed per unit volume runoff. Both methods indicated postfire sediment increases that varied according to season. The higher elevation Lamar River basin had little postfire increase in spring snowmelt season sediment but large increases in summer sediment load. The Yellowstone River had postfire increases in sediment load for the spring but did not reflect the large summer increases of its upstream tributary. The reasons for the difference in postfire snowmelt sediment response are unclear but may relate to basin elevation differences, the effects of unburned watersheds, and cooler postfire springs. The few high streamflow snowmelt events in the postfire period mitigated postfire sediment increases.  相似文献   

20.
Clark, Gregory M., 2010. Changes in Patterns of Streamflow From Unregulated Watersheds in Idaho, Western Wyoming, and Northern Nevada. Journal of the American Water Resources Association (JAWRA) 46(3):486-497. DOI: 10.1111/j.1752-1688.2009.00416.x Abstract: Recent studies have identified a pattern of earlier spring runoff across much of North America. Earlier spring runoff potentially poses numerous problems, including increased risk of flooding and reduced summer water supply for irrigation, power generation, and migratory fish passage. To identify changing runoff patterns in Idaho streams, streamflow records were analyzed for 26 U.S. Geological Survey gaging stations in Idaho, western Wyoming, and northern Nevada, each with a minimum of 41 years of record. The 26 stations are located on 23 unregulated and relatively pristine streams that drain areas ranging from 28 to >35,000 km2. Four runoff parameters were trend tested at each station for both the period of historical record and from 1967 through 2007. Parameters tested were annual mean streamflow, annual minimum daily streamflow, and the dates of the 25th and 50th percentiles of the annual total streamflow. Results of a nonparametric Mann-Kendall trend test revealed a trend toward lower annual mean and annual minimum streamflows at a majority of the stations, as well as a trend toward earlier snowmelt runoff. Significant downward trends over the period of historical record were most prevalent for the annual minimum streamflow (12 stations) and the 50th percentile of streamflow (11 stations). At most stations, trends were more pronounced during the period from 1967 through 2007. A regional Kendall test for water years 1967 through 2007 revealed significant regional trends in the percent change in the annual mean and annual minimum streamflows (0.67% less per year and 0.62% less per year, respectively), the 25th percentile of streamflow (12.3 days earlier), and the 50th percentile of streamflow (11.5 days earlier).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号