首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical recycling of polyamide waste in water was studied using 0.5 L high pressure autoclave at temperatures of 150, 200, 210, 220,230 and 240 °C and at various pressures of 100, 200, 300, 400, 500, 600 and 700 psi (pound per square inch). Viscosity average molecular weight of the polyamide waste sample was determined by Ostwald method and recorded as 1.928 × 103. The reaction was found to be first order with velocity constant in order of 10−2 min−1. The velocity constant and percent conversion of depolymerization reaction at 240 °C and 700 psi pressure were recorded as 2.936 × 10−2 min−1 and 99.99% respectively. The velocity constant was obtained on the basis of measurement of amine value. Kinetic and thermodynamic parameters such as energy of activation, frequency factor, enthalpy of activation were found to be 10.6 kJ mole−1, 0.3719 min−1 and 6.3 kJ mole−1 respectively, at the optimum conditions for maximum depolymerization of polyamide waste.  相似文献   

2.
The objective of the study was to develop a low cost and environmentally friendly liner system for a landfill bioreactor to harness energy from waste. The landfill bioreactor test cell was constructed and evaluated for performance under dry tropical conditions of Sri Lanka. The research was carried out from March 2009 to September 2010. The clay-waste polyethylene-clay composite liner system was developed and permeability was tested. The permeability values of the liner under both saturated and unsaturated conditions at the high estimated hydraulic head of 86.2 cm were in between 6.3 × 10−8 and 2.6 × 10−8 cm/s. The permeability of the liner under waste filled condition varied between 2.17 × 10−9 and 8.15 × 10−9 cm/s, which satisfies the standard permeability value. Thus, the results were below the minimum requirement at very high estimated leachate head. After loading the test cell, leachate and permeate characteristics were analyzed for 273 days, from January 2010 to September 2010. The study showed the relationships among various parameters including pH, electrical permeability, chemical oxygen demand, biological oxygen demand, ammonia, nitrate, phosphate, total solids, volatile solids, total suspended solids and volatile suspended solids. The results of the analysis indicated that there are significant differences in the values of leachate and permeate parameters. The permeate parameters had values very much lower than those of leachate. It reveals that the clay-waste polyethylene-clay composite liner system reduced the concentration of these parameters when the leachate passed through the liner. The biofilm formed in waste polyethylene within the liner may have degraded most of organic materials found in the leachate when it passed through the liner. Therefore, the clay-waste polyethylene-clay composite liner system can be applied for full scale landfill bioreactors, particularly for Asian developing countries, due to better performance and more environmentally friendly characteristics.  相似文献   

3.
The degradation of chitosan by means of ultrasound irradiation and its combination with homogeneous photocatalysis (photo-Fenton) was investigated. Emphasis was given on the effect of additive on degradation rate constants. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. To increase the efficiency of degradation process, degradation system was combined with Fe(III) (2.5 × 10−4mol/L) and H2O2 (0.020–0.118 mol/L) in the presence of UV irradiation and the rate of degradation process change from 1.873 × 10−9−6.083 × 10−9 mol1.7 L s−1. Photo-Fenton process led to complete chitosan degradation in 60 min with the rate increasing with increasing catalyst loading. Sonophotocatalysis in the presence of Fe(III)/H2O2 was always faster than the respective individual processes. A synergistic effect between ultrasound and ultraviolet irradiation in the presence of Fenton reagent was calculated. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of intrinsic viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan change, partially after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested. Results of this study indicate that the presence of catalyst in the reaction medium can be utilized to reduce molecular weight of chitosan while maintaining the power of irradiated ultrasound and degree of deacetylation.  相似文献   

4.
Liming and/or application of specific nutrients have been proposed as countermeasures to the acidification of forest soils in southern Sweden. In this study the stem growth of Picea abies (L.) Karst. growing on acidic mineral soils in SW Sweden was investigated 10 years after additions of lime (Ca; 3000 kg lime ha−1), lime plus P (25 kg ha−1) and K (80 kg ha−1), or N in low doses (2 × 10 kg ha−1 yr−1) (treatments: CaPK, Ca, N, CaPKN, and 2Ca2P2K, respectively). Compared with the control, stem growth was increased following all treatments involving lime additions, including liming alone. The PK addition did not seem to affect growth. The most plausible cause of the observed growth increases was that the lime additions indirectly increased the supply of plant-available N. The annual low-dose N addition did not significantly affect growth. This suggests that air-borne deposition of N, which supplies very small doses of N throughout the year, has a minor or even negligible influence on P. abies growth.  相似文献   

5.
A nitrogen (N) budget was constructed for a period of 6 years (1988–1993) in a Norway spruce stand with current deposition of 19 kg N and 22 kg S ha−1 year−1. The stand was fertilized annually by addition of 100 kg N and 114 kg S ha−1 (NS). Above and below ground biomass, litterfall, fine- root litter production, soil solution and net mineralization were measured to estimate pools, fluxes and accumulation of nitrogen. The average needle litterfall in control (C) and NS plots in 1993 was 2.2 and 2.5 ton ha−1 year−1, respectively. The fine root litter production prior to treatment (1987) was 4.4 ton ha−1 year−1 and after treatment (1993) it was 4.5 and 3.9 ton ha−1 year−1 in C and NS plots, respectively. Net N mineralization in the soil profile down to 50 cm was estimated to be 86 and 115 kg ha−1 year−1 in C and NS plots, respectively in 1992. During the treatment period the uptake of N in the needle biomass in C and NS plots was 29 and 77 kg ha−1 year−1, respectively. No N was accumulated in needles of C plot where the NS plots accumulated 34 kg ha−1 year−1. Of the annually added inorganic N to NS plots 47% was accumulated in the above and below ground biomass and 37% in the soil. N fluxes via fine-root litter production in the C plots were much higher (54 kg ha−1 year−1) than that via litterfall (29 kg ha−1 year−1). The corresponding values in the NS plots were 65 and 43 kg ha−1 year−1, respectively. Most of the net N mineralization occurred in the FH layer and upper mineral soil. It is concluded that fine root litter and litterfall play an important role in the cycling of N. Despite a high N uptake the losses of N in litterfall and fine root litter resulted in an incorporation of N in soil organic matter.  相似文献   

6.
Linseed oil-based polymers have been synthesized via cationic and thermal polymerization and characterized through various techniques, such as SEM, DMA, DSC and TGA. The morphology of the polymer samples after extraction reveals the smooth structure of the polymer matrix. With an increase in oil content, the morphology is observed to be more loosely bound. With an increase in linseed oil content in the samples, the room temperature storage modulus (E′) varies from 10.4 × 107 to 1.8 × 107 Pa. The glass transition temperatures measured through DMA of the cationic samples ranges from 70 to −6 °C and the crosslink densities range from 18.4 × 103 to 3.4 × 103 mol/m3. The glass transition temperatures of the thermal samples range from 106 to −4 °C and the crosslink densities range from 7.7 × 103 to 2.4 × 103 mol/m3. The TGA results show three stages of degradation of the polymer samples and it is also revealed that these polymers are stable up to 200 °C, showing negligible decomposition.  相似文献   

7.
Solidification of sewage sludge has been actively investigated in Japan and Europe since the 1970s. Most previous studies have focused on only the mechanical aspects of potential alternative cover soil made using sewage. Most solidification processes, however, suffer from severe odor problems because of the high alkalinity of the material. The objectives of this study are to develop a cost-effective solidifying agent for conversion of sewage sludge in order to reduce the odor generation, as an alternative to the conventional cement lime-based solidifying agent, and to demonstrate its applicability in the field experimentally. Field test results showed compressive strength well above the 1.0 kg/cm2 criterion for landfill cover soil in Korea. Also, the permeability coefficient was far below the 5 × 10−5 cm/s design criterion for landfill cover soil. Even in harsh weather conditions, such as in winter and summer, the compressive strength was increased. In addition, the permeability was decreased from 3.45 × 10−6 cm/s to 4.78 × 10−7 cm/s, and from 2.27 × 10−6 cm/s to 3.62 × 10−7 cm/s, at 7 days after placement in January and August, respectively. It can therefore be postulated that the proposed solidification process is an appropriate alternative for production of daily landfill cover material. Concerning the odor problem, 5 min of mixing of sewage with TS103, one of the proprietary agents used in this work, was sufficient to suppress the concentration of ammonia emitted to below 10 ppm. Considering all of these experimental field test results, it is expected that the proposed method could be a competitive approach for manufacture of alternative landfill cover material.  相似文献   

8.
This work presents the first results of a study concerning on-road and in-vehicle exposure to particulate matter in the area of Athens. PM10 concentration measurements were conducted by TSI DustTrak, while driving along routes with different characteristics of traffic density, during September 2003–March 2004. Concurrent measurements of the ultrafine particles (UFPs) number concentration were also conducted, by condensation particle counter during part of the days. Pedestrian exposure to PM10 and UFPs was also studied through stationary measurements on the kerbside of selected roads on November 2003 and February 2004. A major avenue, a heavy-trafficked road across a children hospital and two central roads, one in a residential and one in a commercial area were selected for measurement. The results indicate that every day commuters are exposed to significant concentration levels. Higher exposures were observed in heavy-trafficked areas and during rush hours. Mean PM10 in-vehicle and on-road concentrations ranged from 30–320 μg/m3 and 70–285 μg/m3, respectively. The ultrafine particles number concentrations were in the range of 5.0 × 104–17.3 × 104 particles/cm3 in-vehicle and 3.1 × 104–7.3 × 104 particles/cm3 on the kerbside of a central residential road. Both PM10 and UFPs concentrations presented repeated short-term peak exposures. The results clearly point out the importance of the road microenvironment (in-vehicle and on kerbside) for population exposure in urban areas.  相似文献   

9.
Soy protein plastics are a renewable, biodegradable alternative to fossil fuel-based plastic resins. Processing of soy protein plastics using conventional methods (injection molding, extrusion) has met with some success. Viscosities of processable formulations that contain soy protein along with the necessary additives, such as glycerol and cornstarch, have not been reported, but are necessary for extrusion modeling and the design of extrusion dies. Resins consisting of soy protein isolate-cornstarch ratios of 4:1, 3:2, and 2:3 were plasticized with glycerol and soy oil, compounded in a twin screw extruder and adjusted to 10% moisture. The effects on viscosity of added sodium sulfite, a titanate coupling agent and recycling were evaluated using a screw-driven capillary rheometer at shear rates of 100–800/s. The viscosities fit a power-law model and were found to be shear thinning with power-law indices, n, of 0.18–0.46 and consistency indices, m, of 1.1 × 104–1.0 × 105. Power-law indices decreased and consistency indices increased with increasing soy protein-to-cornstarch ratio and in the absence of sodium sulfite. Addition of the titanate coupling agent resulted in increased power-law index and decreased consistency index. Viscosities at a shear rate of 400/s decreased with recycling, except for the 4:1 soy protein isolate to cornstarch formulation, which displayed evidence of wall slip. Power-law indices were unaffected by recycling. Viscosities in the tested shear rate range were comparable to polystyrene and low-density polyethylene indicating soy protein plastics are potential drop-in replacements for commodity resins on conventional plastics processing equipment.  相似文献   

10.
Partly due to the complex and variable composition of oily sludge generated by the petroleum industry, cost-effective treatment and proper disposal pose considerable challenges worldwide. In this study, an extended component-based analysis of the oily sludge from a flocculation-flotation unit of a wastewater treatment system in a refinery in Sweden was carried out over 1 year. The heterogeneity of the oily sludge is illustrated by the wide ranges of concentrations found for different chemical components, particularly metals. Among the petroleum hydrocarbons, the most abundant compounds were nonpolar aliphatic hydrocarbons (63.7 ± 16.7 g kg−1); from the benzene, toluene, ethylbenzene, and xylene group, xylenes (91–240 mg kg−1) were most abundant; and among polycyclic aromatic hydrocarbons, naphthalene (25.7 ± 21.4), fluorene (27.25 ± 10.0), and phenanthrene (43.8 ± 18.4 mg kg−1) were most abundant (all results in terms of dry matter). Based on the EU guidelines and the mean concentration values for metals found in the oily sludge, e.g., Pb (135.4 ± 125.8), Cu (105.2 ± 79.1), Hg (42.8 ± 31.3), Ni (320 ± 267.4), and Zn (1321.7 ± 529.9 mg kg−1), disposal of oily sludge even in landfills for hazardous waste is not allowed. The organic content of the sludge can be reduced through biotreatment, but not the metal content. A multistep component-based treatment scheme is therefore needed.  相似文献   

11.
In the Beijing area, March and April have the highest frequency of sand-dust weather. Floating dust, blowing sand, and dust storms, primarily from Mongolia, account for 71%, 20%, and 9% of sand-dust weather, respectively. Ambient air monitoring and analysis of recent meteorological data from Beijing sand-dust storm periods revealed that PM10 mass concentrations during dust storm events remained at 1500 μg m−3, which is five to ten times higher than during non-dust storm periods, for fourteen hours on both April 6 and 25, 2000. During the same period, the concentrations in urban areas were comparable to those in suburban areas, while the concentrations of gaseous pollutants, such as SO2, NO x , NO2, and O3, remained at low levels, owing to strong winds. Furthermore, during sand-dust storm periods, aerosols were created that consisted not only of many coarse particles, but also of a large quantity of fine particles. The PM2.5 concentration was approximately 230 μg m−3, accounting for 28% of the total PM10 mass concentration. Crustal elements accounted for 60–70% of the chemical composition of PM2.5, and sulfate and nitrate for much less, unlike the chemical composition of PM2.5 on pollution days, which was primarily composed of sulfates, nitrates, and organic material. Although the very large particle specific surface area provided by dust storms would normally be conducive to heterogeneous reactions, the conversion rate from SO2 to SO4 2− was very low, because the relative humidity, less than 30%, was not high enough.  相似文献   

12.
Airborne particulate matter (PM) concentrations were measured in Iksan, a suburban area in South Korea during April, 2003. PM2.5 (particles with an aerodynamic diameter less than 2.5 μm) and PM10 (particles with an aerodynamic diameter less than 10 μm) samples were collected, and the chemical characteristics of particles were examined for diurnal patterns, yellow dust/rainfall influences, and scavenging effects. Average concentrations of PM2.5 and PM10 mass measured were 37.3 ± 16.2 μg m−3 and 60.8 ± 29.5 μg m−3, respectively. The sum of ionic chemical species concentrations for PM2.5 and PM10 was 16.9 ± 7.3 and 23.1 ± 10.1 μg/m3, respectively. A significant reduction in PM mass concentrations during rainfall days was observed for coarse mode (PM2.5 − 10) particles, but less reduction was found for fine (PM2.5) mass concentration. SO4 2−, NH4 +, and K+ predominated in fine particulate mode, NO3 and Cl predominated in fine particle mode and coarse particle mode, but Na+, Mg2+, and Ca2+ mostly existed in coarse mode. The high concentration of ammonium due to local emissions and long-range transport neutralized sulfate and nitrate to ammonium sulfate and ammonium nitrate, which were major forms of airborne PM in Iksan. Average mass concentrations of PM10 in daytime and at night were 57.6 and 70.0 μg m−3, and those of PM2.5 were 35.4 and 42.5 μg m−3, respectively. NO3 and Cl in both PM2.5 and PM10 were about double at night than in the daytime, while the rest of the chemical species were equal or a little higher at night than in the daytime. The results suggest the formation of ammonium nitrate and chloride when high ammonia concentration and low air temperature are allowed. Backward air trajectory analyses showed that air masses arriving at the site during yellow dust period were transported from arid Chinese regions, which resulted in high concentrations of airborne PM mass concentrations. In the meantime, air mass trajectories during a rainfall period were mostly from the Pacific Ocean or the East China Sea, along with a relatively low PM concentration.  相似文献   

13.
This study focuses on providing a direct insight into the process by which sulfate is formed on mineral dust surface in the actual atmosphere. Six sets of aerosol measurements were conducted in the outskirts of Beijing, China, in 2002–2003 using a tethered balloon. The mineralogy of individual dust particles, as well as its influence on the S (sulfur) loadings was investigated by SEM-EDX analysis of the directly collected particles. The mixed layer in the urban atmosphere was found to be quite low (500–600m), often appearing as a particle dense stagnant layer above the surface. It is suggested that mineral dust is a common and important fraction of the coarse particles in Beijing (35–68%), and that it is relatively enriched with Calcite (>28%). An exceptional amount of S was detected in the mineral particles, which can be explained neither by their original composition, nor by coagulation processes between the submicron sulfates and the dust. Heterogeneous uptake of gaseous SO2, and its subsequent oxidation on dust was suggested as the main pathway that has actually taken place in the ambient environment. The mineral class found with the largest number of particles containing S was Calcite, followed by Dolomite, Clay, Amphibole etc., Feldspar, and Quartz. Among them, Calcite and Dolomite showed distinctly higher efficiency in collecting sulfate than the other types. A positive correlation was found with the number of S containing particles and the relative humidity. Calcite in particular, since almost all of its particles was found to contain S above 60% r.h. On the other hand, the active uptake of SO2 by the carbonates was not suggested in the free troposphere downwind, and all the mineral classes exhibited similar S content. Relative humidity in the free troposphere was suggested as the key factor controlling the SO2 uptake among the mineral types. In terms of sulfate loadings, the relationship was not linear, but rather increased exponentially as a function of relative humidity. The humidity-dependent uptake capacity of mineral types altogether showed an intermediate value of 0.07 gSO4 2− g−1 mineral at 30% r.h. and 0.40 gSO4 2− g−1 mineral at 80%, which is fairly consistent with laboratory experiments.  相似文献   

14.
A simple, low-cost method for suppression of dioxins/furans (hereinafter referred to as dioxins) is required because many middle- and, especially, small-scale incinerators have fallen into disuse or have been dismantled because of the high running and system costs of measures for the suppression of dioxins. Therefore, the purpose of the present study was to develop a simple removal method for dioxins from combustion gas and to evaluate the basic removal rate of dioxins. The removal method for suspended matter in a gas mixture (cold model) and dioxins in exhaust gases (hot model) has been investigated by means of gas injection into water, the mechanism of which is that the suspended matter in the gas gathers at the gas–liquid interface. In the cold model, the removal ratio of fine particles (RP) by gas injection into water was reproduced well by the following equation: RP (%) = 100 × {1−exp(−0.8 · SS · tC)}, where SS (cm2/cm3) is the specific surface area of bubbles and tC (s) is the residence time of bubbles in water. The removal ratio of fine particles increased as the product Ss · tC increased. In a hot model using the exhaust gas from combustion experiments of polyvinyl chloride, the removal ratio of dioxins (RD) by injecting the exhaust gas into water was estimated by the following equation: RD (%) = 100 × {1−exp(−0.8 · SS · tC · CD0 0.07)}, where CD0 [ng/cm3 (at standard temperature and pressure)] is the dioxins concentration in the exhaust gas before injection into water. RD depends greatly on the specific surface area of bubbles and the residence time of the bubbles in water, and only weakly on the dioxins concentration in the exhaust gas. Injection of the exhaust gas into water has been shown to be effective and was evaluated as a simple method for the removal of dioxins from exhaust gas.  相似文献   

15.
The long-term monitoring of precipitation and its chemical composition are important for identifying trends in rain quality and for assessing the effectiveness of pollution control strategies. A statistical test has been used to the atmospheric concentrations measured in the French rural monitoring network (MERA) in order to bring out spatio-temporal trends in precipitation quality in France over the period 1990–2003. The non-parametric Mann–Kendall test which has been developed for detecting and estimating monotonic trends in the time series was used and applied in our study at annual values of wet-only precipitation concentrations. The emission data suggest that SO2 and NO x emissions decreased (−3.3 and −2.0% year−1, respectively) contrary to NH3 emissions that increased slightly (+0.2% year−1) over the period 1990–2002 in France. On the national scale, the pH values have a significant decreasing trend of −0.025 ± 0.02 unit pH year−1. and concentrations in precipitation have a significant decreasing trend, −3.0 ± 1.6 and −3.3 ± 0.6% year−1, respectively, corresponding with the downward trends in SO2 emissions in France (−3.3% year−1). A good correlation (R 2 = 0.84) between SO2 emissions and concentrations was obtained. The decreasing trend of was more significant (−5.4 ± 5.2% year−1) than that of (−1.3 ± 2.4% year−1). Globally, the concentration of the major ions showed a clear downward trend including marine and alkaline ions. In addition, the relative contribution of HNO3 to acidity precipitation increased by 51% over the studied period.  相似文献   

16.
Hydrolytic depolymerization of polyamide waste in water was studied using 0.5 L high pressure autoclave at temperatures of 235, 240, 245, 250 °C and at autogenious pressure 480, 500, 520, and 600 psi (pound per square inch).The reaction rate constant, energy of activation, enthalpy of activation, entropy of activation and equilibrium constant were calculated from the experimental data obtained. The maximum depolymerization (59.2%) of polyamide waste into monomer caprolactum was obtained at 250 °C and 600 psi pressure. The reaction rate constant was obtained on basis of measurement of amine value and residual weight. The depolymerization reaction was found to be pseudo first order with reaction rate constant of the order of 10−3 min−1. The enthalpy, entropy and free energy of activation were recorded as 85.75, −0.1354 and 156.59 kJ mol−1 respectively at the experimental conditions for maximum depolymerization of polyamide waste. The thermodynamic equilibrium constant for this hydrolysis reaction was found to be 2.3 × 10−16.  相似文献   

17.
 The goal of the inclined conveyor method for particle shape separation is to process a large amount of feed material for recycling technology. The high feed rate has been achieved because the movement of particles is faster than for other previously introduced equipment. The separation performance of the apparatus was tested with foundry sand. A large amount of sand was treated, and various processing capacities were studied experimentally. The feed method was improved from point to line with wide troughs to process the higher feed rate. We succeeded in attaining a feed rate of 1.49 × 10−3 kg/s with a 0.3-m trough. The space filling, which was an important factor in deciding the capacity of the feed rate, was defined. This method is useful for any kind of line-feed method. Received: March 25, 2002 / Accepted: August 5, 2002  相似文献   

18.
19.
20.
The kinetics of polyesterification of glycerol, phthalic anhydride and jatropha oil leading to the formation of alkyd resins were studied. A series of alkyd resins having different amount of jatropha oil viz., 40–80% have been prepared by employing two stage alcoholysis-polyesterification process. The extent of reaction and average degree of polymerisation were calculated from the end group analysis of the reaction mixture withdrawn at regular intervals of time. The initial reaction rates followed the second order kinetics and thereafter deviations were observed. An appreciable degree of conversion was noticed from the extent of the reaction which lies in the range of 49.5–62.5%. The average degree of polymerisation calculated in the region of deviation from second order suggested the occurrence of chain branching at relatively shorter intervals along the polymer chain. The second order rate constants were found to be of the order of 10−5 g (mg KOH)−1 min−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号