首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we assess climate change impacts on an intensively managed grassland system at the Swiss Plateau using the process-based grassland model PROGRASS. Taking the CO2 fertilization into account, we find increasing yield levels (in the range of 10–24%) and sharp increases in production risks for an illustrative climate change scenario that suggests a marked increase in temperature and decrease in summer rainfall. Climate change–induced increases in the coefficients of variation of grassland yields are in the range of 21 and 50%. This finding underpins that additional risk management strategies are needed to cope with climate-change impacts on grassland production. The outputs from the grassland model are evaluated economically using certainty equivalents, i.e., accounting for mean quasi rents and production risks. To identify potential risk management strategies under current and future climatic conditions, we consider adjustments of production intensity and farm-level yield insurance. The impact of climate change on production intensities is found to be ambiguous: farmers’ will increase intensity under unconstrained production conditions, but will decrease production intensity in the presence of a cross-compliance scheme. Our results also show that the considered insurance scheme is a powerful tool to manage climate risks in grassland production under current and future conditions because it can reduce the coefficients of variation of quasi rents by up to 50%. However, we find that direct payments tend to reduce farmers’ incentives to use such insurance scheme.  相似文献   

2.
Forage and more widely grassland systems are difficult to analyze in economic terms because a large proportion of what is produced is not marketed. Economic misestimation of these farm products may dramatically alter projected climate change impacts. This study estimates the economic value of grass and assesses the impact of climatic variations on grassland–livestock systems by taking various environmental and climatic factors into account. Accordingly, grass yield responses to nitrogen inputs (N-yield functions) have been simulated using the grassland biogeochemical PaSim model and then fed into the economic farm-type supply AROPAj model. We developed a computational method to estimate shadow prices of grass production, allowing us to better estimate the effects of climatic variability on grassland and crop systems. This approach has been used on a European scale under two Intergovernmental Panel on Climate Change climate scenarios (AR4 A2 and B1). Results show a significant change in land use over time. Accordingly, due to decreases in feed expenses, farmers may increase livestock, thereby increasing overall greenhouse gas emissions for all scenarios considered. As part of autonomous adaptation by farming systems, N-yield functions extending to pastures and fodders allow us to improve the model and to refine results when marketed and non-marketed crops are considered in a balanced way.  相似文献   

3.
The impacts of climate change on crop yield have increasingly been of concern. In this study, we investigated the impacts of trends in sunshine duration (S) and maximum temperature (T max) on rice yields in Jiangsu Province at both the provincial and county level during the period from 1980 to 2008. The results showed that although S and T max both were positively correlated with rice yields, the combined impacts of the decreasing trend of S (0.37 h/decade) and the increasing trend of T max (0.34 °C/decade) in August caused a reduction of 0.16 t ha?1 in rice yields (approximately 1.8 %) in Jiangsu Province, and the trend of S had played a dominant role in the yield losses. Further analyses suggest that the increasing concentration of aerosols from rapid economic development in Jiangsu Province has caused a significant solar dimming at least since 1960, making mitigations and adaptation measurements on regional haze impact imperative. Our study provides a prototype for detecting negative feedback on agricultural production caused by intensified anthropogenic activities that aim only to create rapid economic development.  相似文献   

4.
Climate change will affect crop yields and consequently farmers’ income. The underlying relationships are not well understood, particularly the importance of crop management and related factors at the farm and regional level. We analyze the impacts of trends and variability in climatic conditions from 1990 to 2003 on trends and variability in yields of five crops and farmers’ income at farm type and regional level in Europe considering farm characteristics and other factors. While Mediterranean regions are often characterized as most vulnerable to climate change, our data suggest effective adaptation to variable and changing conditions in these regions largely attributable to the characteristic farm types in these regions. We conclude that for projections of climate change impacts on agriculture, farm characteristics influencing management and adaptation should be considered, as they largely influence the potential impacts.  相似文献   

5.
We used simple and explicit methods, as well as improved datasets for climate, crop phenology and yields, to address the association between variability in crop yields and climate anomalies in China from 1980 to 2008. We identified the most favourable and unfavourable climate conditions and the optimum temperatures for crop productivity in different regions of China. We found that the simultaneous occurrence of high temperatures, low precipitation and high solar radiation was unfavourable for wheat, maize and soybean productivity in large portions of northern, northwestern and northeastern China; this was because of droughts induced by warming or an increase in solar radiation. These climate anomalies could cause yield losses of up to 50 % for wheat, maize and soybeans in the arid and semi-arid regions of China. High precipitation and low solar radiation were unfavourable for crop productivity throughout southeastern China and could cause yield losses of approximately 20 % for rice and 50 % for wheat and maize. High temperatures were unfavourable for rice productivity in southwestern China because they induced heat stress, which could cause rice yield losses of approximately 20 %. In contrast, high temperatures and low precipitation were favourable for rice productivity in northeastern and eastern China. We found that the optimum temperatures for high yields were crop specific and had an explicit spatial pattern. These findings improve our understanding of the impacts of extreme climate events on agricultural production in different regions of China.  相似文献   

6.
Agriculture is vulnerable to climate change in multiple ways. Here, we use the northern region of the Netherlands as a case study to explore how risk assessments for climate change impacts on crop production can address multiple vulnerabilities. We present a methodology, which we call agro climate calendar (ACC) that (i) includes potential yield losses, as well as loss of product quality, and (ii) assesses the risks of a variety of climate factors including weather extremes and the emergence and abundance of pests and diseases. Climate factors are defined for two time slices: 1990 (1976–2005) and 2040 (2026–2055); the frequency of occurrence of the factors is compared for the two periods, and the resulting frequency shifts are presented in a crop calendar on a monthly basis. This yields an indication of the magnitude and direction of changes in climatic conditions that can lead to damage by extreme events and pests and diseases. We present results for the two most important crops in the region, seed potato, and winter wheat. The results provide a good overview of risks from climate factors, and the most important threats and opportunities are identified. This semi-quantitative approach is firmly rooted in farm management, which is the level where operational and strategic decisions are made. Thus, the approach is well suited to assist local stakeholders such as farmers and policy makers to explore farm-level adaptation. This work is complementary to previous modeling work that focused mainly on the relation between mean climate change factors (i.e., temperature) and crop yield.  相似文献   

7.
Best management practices, such as conservation tillage, the optimum level of irrigation, fertilization, are frequently used to reduce non-point source pollution from agricultural land and improve water quality. In this study, we used the soil and water assessment tool to model the impacts of different irrigation (adjusted to crop need), cropping and fertilization practices on total nitrogen loss. The economic impacts of these practices on crop net farm income were also evaluated. For this purpose, the model was calibrated through comparing model outputs with observations to ensure reliable hydrologic, crop yield and nitrate leaching simulations. The results showed that by reducing water or fertilizer or combination of both, we can reduce nitrate leaching. For wheat and corn, the best scenario was S1n1 (combination between reduction by 10 % of water and nitrogen fertilizer application, simultaneously) and S2n3 (combination of 20 and 30 % reduction in water and fertilizer application), respectively. These scenarios are both ecologically and economically desirable. Also, decreasing nitrogen fertilization by 50 % for corn would decrease the nitrate pollution from 101.1 to 32.3 kg N ha?1; therefore, this strategy is ecologically desirable but economically unsound. So, there are opportunities for environmental decision makers to encourage farmers to implement these strategies. Also, since the nitrogen leaching cannot decrease without a reduction in net farm income for crops such as corn; hence, the losses of farmers should be compensated.  相似文献   

8.
Numerous analyses of the possible impacts of future climatic changes on tree species composition have been published for both lowland and high-elevation forests. Most of these studies were based on the application of forest "gap" models, and the vast majority of them considered only changes in the average of climatic parameters over time. In this study, we use a unique data set on reconstructed past climatic variations to analyse forest dynamics simulated by the forest gap model ForClim. This analysis forms the basis for a systematic exploration of the ecological effects of changing means vs. changing variability of climate on central European forests. A reconstruction of historical climate covering the last 470 years in the Swiss lowlands (ClimIndex) is extrapolated to a transect across the alpine (cold) treeline and used to simulate the influence of climate variations on the time scale of decades on forest biomass and tree species composition at both sites. While the simulation at the low-elevation site shows little sensitivity to climate variations, the results from upper subalpine forests suggest that two major dieback events would have occurred at elevations above the current but below the climatic tree line, induced by clusters of exceptionally cold summers. The results are in agreement with available dendrochronological data and with documentary evidence on massive negative impacts on flora and fauna at high elevations during these periods. We conclude that ForClim is capable of capturing the effects on tree population dynamics of climate variability at these sites as reconstructed from the ClimIndex record. A factorial design is used to address the sensitivity of ForClim to changes of the long-term averages vs. changes of the variability of monthly temperature and precipitation data. To this end, the simulated tree species composition of near-natural forests is examined along a climate gradient in Europe. The results indicate that there are three types of forest response: (1) little sensitivity to both kinds of change, (2) strong sensitivity to changes in the means, but little sensitivity to changing variability, and (3) strong sensitivity to changing variability at least in parts of the examined climate space. Half of the cases investigated fall under the third category, suggesting that emphasis should be placed on also assessing the sensitivity of ecosystems to future changes in climate variability rather than on changes of average values alone. Electronic Publication  相似文献   

9.
We used a stochastic production function method together with a farm-level dataset covering 18 farms over a 23-year period to assess the role that soil and water conservation practices play in affecting the climate change impacts on potato yield in northwestern New Brunswick, Canada. Our analysis accounted for the yield effects of farm inputs, farm technologies, farm-specific factors, seasonal climatic variables, soil and water conservation practices, and a series of interaction terms between soil and water conservation practices and climatic variables. Regression results were used in combination with three climate change scenarios developed by the Intergovernmental Panel on Climate Change (A2, A1B, B1) and four general circulation model predictions over three 30-year time periods (2011–2040, 2041–2070, and 2071–2100) to estimate a range of potato yield projections over these time periods. Results show that accounting for soil and water conservation practices in climate–yield relationships increased the impacts of climate change on potato yield, with yield increases of up to 38 % by the 2071–2100 period. These findings provide evidence that adoption of soil and water conservation practices can help boost potato production in a changing Canadian climate.  相似文献   

10.
Understanding crop responses to climate is essential to cope with anticipated changes in temperature and precipitation. We investigated the climate–crop yield relationship and the impact of historical climate on yields of rice, maize and wheat in the Koshi basin of Nepal. The results show significant impact of growing season temperature and precipitation on crop production in the region. Rice, maize and wheat cultivated at altitudes below 1,100, 1,350 and 1,700 m amsl (above mean sea level), respectively, suffer from stress due to higher temperatures particularly during flowering and yield formation stages. Responses of crop yields to a unitary increment in growing season mean temperature vary from ?6 to 16 %, ?4 to 11 % and ?12 to 3 % for rice, maize and wheat, respectively, depending on the location and elevation in the basin. In most parts of the basin, we observe warming trends in growing season mean temperatures of rice, maize and wheat over the last few decades with clear evidence of negative impacts on yields. However, at some high-elevation areas, positive impacts of warming are also observed on rice and maize yields. If the observed trends in temperature continue in future, the impact is likely to be mostly negative on crop production in the basin. However, crop production may gain from the warming at relatively higher altitudes provided other conditions, e.g., water availability, soil fertility, are favorable.  相似文献   

11.
In this study,we identified ecological pressures on grassland ecosystems and adaptive countermeasures in Northern China.Our research revealed that the main sources of these pressures included population growth,economic development,resources exploitation,and global climate change,with human-related activities being overriding factors.Overgrazing was an important reason for grassland imbalance,causing soil erosion and desertification,especially during the sensitive spring greening phase.In steppe zones,commercial coal mining was destructive to the ecological environment.Regarding long-term strategies,we recommend that policy-makers devote more consideration to a new conceptual approach for transforming grasslands through shifting the focus from die grassland’s traditional production functions to meir ecological functions.Applying this concept,adaptive countermeasures should be developed to reduce human impacts based on the environmental capacities of grasslands.Moreover,we recommend the development of environment-friendly industries and reduction of pressures from human activities as effective measures for maintaining the balance between sustainable economic development and grassland conservation.Lastly,we suggest that restoration of degraded grasslands should conform to the principle of natural vegetation to further improve the ecological adaptability of plants and ecosystem stability.This study is expected to provide scientific support for policy-makers engaged in grassland protection.  相似文献   

12.
Africa faces enormous food security challenges. Most commentators agree that, despite the complexities of food insecurity, there will have to be increases in food production from existing agricultural land. Most, too, are pessimistic about the future, judging likelihood of success on the basis of past performance of modern agricultural development. Sustainable agriculture, though, offers new opportunities, by emphasising the productive values of natural, social and human capital, all assets that Africa either has in abundance or that can be regenerated at low financial cost.This paper sets out an assets-based model of agricultural systems, together with a typology of eight improvements that are currently in use in sustainable agriculture projects. In the 45 projects/initiatives spread across 17 countries that are investigated, some 730,000 households have substantially improved food production and household food security. In 95% of the projects where yield increases were the aim, cereal yields have improved by 50–100%. Total farm food production has increased in all. The additional positive impacts on natural, social and human capital are also helping to build the assets base so as to sustain these improvements in the future.This analysis indicates that sustainable agriculture can deliver large increases in food production in Africa. But spreading these to much larger numbers of farm households will not be easy. It will require substantial policy, institutional and professional reform.  相似文献   

13.
Predicted impacts from a proposed wind farm at Aristazabal Island, British Columbia, were estimated to examine the compatibility of a wind farm with ecological factors using Ecosystem-Based Management (EBM). Historically, GIS-based multi-criteria decision making (MCDM) has not been used extensively in the quantification of ecological impacts. A GIS suitability map was created based on predictive ecosystem mapping (PEM) data using combined methods of Boolean overlay and weighted linear combination (WLC). This map was used to assist in generating a preliminary project layout for measuring footprint impacts to ecological elements. These impacts were tested against a selection of disturbance targets using scoring for ecological (as well as economic and social) factors based on EBM documentation. Of the 12 ecological targets identified, 10 were easily satisfied by the proposed layout, while the remaining two, impacts to rare ecosystems and their critical habitat, could be satisfied if the final design incorporated further field studies. Despite the data gaps and uncertainties (e.g., non-footprint impacts such as fragmentation), GIS suitability mapping using PEM is demonstrated to be an effective tool in representing a real wind farm and quantifying its ecological impacts in terms of magnitude.  相似文献   

14.
The Yellow River source region is located in the hinterland of the Qinghai-Tibetan Plateau, and has a sensitive response to global change due to its unique cryosphere processes. Any slight changes in natural elements and human activity can have a magnified effect on grassland ecosystem, animal husbandry, and pastoral livelihoods since its economy is exclusively dominated by grassland animal husbandry. Because snow disaster has been one of the major natural disasters in the source region, it is crucial to explore the economic impact of snow disaster on animal husbandry and identify effective adaptation measures. A nonlinear model of meat production was established in relation to snow disaster, grassland productivity, and disaster prevention by introducing a snow level index, and selecting three key indicators of grassland productivity and disaster prevention, including grass growing season precipitation concentration, sown grassland area, and warm barn area. This is an inverse of negative correlation, less meat when there is more snow. Per unit increase in snow level in the source region led to a decrease of 0.213 units in meat production. However, production losses caused by the snow disaster could be effectively suppressed by the increase in scale and intensity of sown grassland and warm barn construction. Per unit increase in sown grassland and warm barn area led to an increase of 0.240 and 0.610 units in meat production, respectively. The effects of sown grassland and warm barn area in reducing snow damage at different snow levels were analyzed. Snow disaster adaptation in the source region should include acceleration of the construction of meteorological disaster prevention and mitigation system, to ensure balanced forage supply between winter and spring, to prioritize the development of warm barn, and reduce the proportion of self-financed construction warm barn to encourage active participation of pastoralists, and to develop insurance mechanism for livestock.  相似文献   

15.
岷江上游地区的草地资源与畜牧业发展   总被引:4,自引:0,他引:4  
岷江上游草地面积837226hm^2,大约占了该区土地面积的35%。这块草地蕴藏着丰富的生物多样性,具有重要的生态学功能,是岷江上游绿色生态屏障的重要组成部分。高山草甸草地和亚高山草甸草地是该区的主要植被类型,其面积分别占草地总面积的54.8%和17.2%,其产草量分别占该区各类草地总产草量的53.47%和26.46%。岷江上游各县天然草地的面积和各县草地畜牧业在经济结构中所占的比重都表现了从高海拔到低海拔递变的趋势,基本上与植被的垂直梯度变化相耦合。指出了当前草地畜牧业发展存在的一些问题:超载过牧现象严重,生产效率低下,集约化水平低。除了饲草的生产与加工、畜种改良和草种改良等措施外,结合岷江上游的实际情况,在发展的思路和技术措施上着重阐述了以下几个方面:发展特色畜牧业,摒弃头数畜牧业;以市场为导向的主动畜群时空周转;结合“天保工程”和“退耕还林工程”,促进农林牧业的紧密结合。  相似文献   

16.
近年来草地租赁市场在牧区出现并逐渐发展。然而,作为调节牧户资源的市场制度,其对草原社会生态的影响莫衷一是。Agent-based model(ABM)是社会科学领域先进的定量分析模型,可用来模拟复杂环境中主体间的交互关系及作用结果。本文首先在理论上分析了内蒙古牧区“人-草-畜”关系,揭示了牧区社会生态的复杂性,之后在此基础上,运用ABM模拟草地租赁中“人-草-畜”关系,通过调节干旱发生概率及牧户草地出租意愿,分析干旱冲击下草地租赁对草场退化及牧户生计的影响。为了更合理地展示和模拟牧区实际,本文结合2015—2016年内蒙古锡林郭勒盟、呼伦贝尔市的调研数据和部分文献、年报数据,对ABM中相关的参数进行设定,构建了用于模拟干旱冲击下牧区草地租赁的模型:①控制干旱概率,调节出租意愿的模型结果表明,在一定的干旱冲击下,草地租赁是一个有效的制度安排,可以缓解干旱导致的草地退化,提高牧区草场的总体生产力,并提高参与租赁户的生计水平。②控制出租意愿,调节干旱发生概率的模型结果则表明,当干旱加剧时,仅有单一的草地租赁制度无法阻止草场退化和牧户收入下降,草地生态及牧户收入仍然会受到干旱冲击的较大影响。因此,完善草地租赁市场,可在一定程度上缓解干旱冲击对草地退化的影响,提高牧户收入。但为了保障牧区社会生态的可持续性,还需发展牧业合作社和草地合作小组等其他制度。ABM可以通过对现实变量的参数化来模拟现实状况,对指导类似草原牧区等存在多个主体交互关系的社区实践具有重要作用。  相似文献   

17.
Drylands are home to more than two billion people and are characterised by frequent, severe droughts. Such extreme events are expected to be exacerbated in the near future by climate change. A potentially simple and cost-effective mitigation measure against drought periods is sand dams. This little-known technology aims to promote subsoil rainwater storage to support dryland agro-ecosystems. To date, there is little long-term empirical analysis that tests the effectiveness of this approach during droughts. This study addresses this shortcoming by utilising multi-year satellite imagery to monitor the effect of droughts at sand dam locations. A time series of satellite images was analysed to compare vegetation at sand dam sites and control sites over selected periods of drought, using the normalised difference vegetation index. The results show that vegetation biomass was consistently and significantly higher at sand dam sites during periods of extended droughts. It is also shown that vegetation at sand dam sites recovers more quickly from drought. The observed findings corroborate modelling-based research which identified related impacts on ground water, land cover, and socio-economic indicators. Using past periods of drought as an analogue to future climate change conditions, this study indicates that sand dams have potential to increase adaptive capacity and resilience to climate change in drylands. It therefore can be concluded that sand dams enhance the resilience of marginal environments and increase the adaptive capacity of drylands. Sand dams can therefore be a promising adaptation response to the impacts of future climate change on drylands.  相似文献   

18.
Although impacting primarily economic sectors, droughts may also initiate dynamic mechanisms that have socio-environmental consequences on sustainability of the impacted areas. To date, most research has dealt with the economic impacts of droughts, with minimal attention being paid to the dynamics of damaging mechanisms associated with socio-environmental impacts. Using a systemic approach, this paper develops a method of identifying the dynamic structures responsible for the consequences of drought. Considering the impacts of recent droughts in Iran, the paper presents a conceptual model, underpinned by a Limits to Growth archetype to explain how different drought impacts are triggered. Moreover, adopting the Viability Loops concept, a range of strategies and indices are suggested as monitoring tools to sustain socio-economic life in a drought-impacted area. The provinces of Hamadan (with water abundance), and Yazd and Isfahan (with water scarcity) in Iran have been selected to illustrate the proposed methodology. Results show a higher vulnerability to droughts in the water-rich region due to dependence on water abundance as opposed to the water-poor regions, which are well adapted to water scarcity conditions.  相似文献   

19.
Greenhouse gases (GHG) emissions from agricultural farming practice contribute significantly to European GHG inventories. For example, CO2 is emitted when grassland is converted to cropland or when peatlands are drained and cultivated. N2O emissions result from fertilization. Enabling farmers to reduce their GHG emissions requires sufficient information about its pressure–impact relations as well as incentives, such as regulations and funding, that support climate-friendly agricultural management. This paper discusses potentials to improve the supply of information on: farm-specific climate services or impacts, present policy incentives in Germany and England that support climate-friendly farm management and related adaptation requirements. Tools which have been developed for a farm environmental management software (to be added after review because of potential identification) are presented. These tools assess CO2 emissions from grassland conversion to cropland and peatland cultivation, as well as N2O emissions from nitrogen fertilization. As input data, the CO2 tool requires a classification of soil types according to soil organic carbon storage. The input data based on soil profile samples was compared with reference data from the literature. The N2O tool relies on farm data concerning fertilization. These tools were tested on three farms in order to determine their viability with respect to the availability of required data and the differentiation of results, which determines how well site-specific conservation measures can be identified. Assessing CO2 retention function of grassland conservation to cropland on the test farms leads to spatially differentiated results (~100 to ~900 potentially mitigated t CO2 ha?1). Assessed N2O emissions varied from 0.41 to 1.1 t CO2eq. ha?1 a?1. The proposed methods support policies that promote a more differentiated funding of climate conservation measures. Conservation measures and areas can be selected so that they will have the greatest mitigation effects. However, even though present policy instruments in Germany and England, such as Cross Compliance and agri-environmental measures, have the potential to reduce agricultural GHG, they do not appear to guide measures effectively or site-specifically. In order to close this gap, agri-environmental measures with the potential to support climate protection should be spatially optimized. Additionally, the wetland restoration measures which are most effective in reducing GHG emissions should be included in funding schemes.  相似文献   

20.
Conservation agriculture has successfully spread in a number of developing country contexts, resulting in both positive production and environmental impacts. However, there are ongoing questions about the appropriateness of conservation agriculture for small-scale farming as poor farmers tend to be risk averse, typically lack access to credit, and may have planning horizons associated with heavily discounted future benefits. This study investigates farmer attitudes toward how a hypothetical set of conservation agriculture production practices will affect yield, labor use, erosion, and cost in two communities of Bolivar province, Ecuador, through the implementation of a discrete choice experiment. Results show producers are most concerned with future yields, planting labor, and overall costs. While off-farm erosion impacts are of concern, producers only placed small values on these impacts. Results provide support for conservation agriculture outreach to highlight practices that increase long-run production and reduce the time and technical skills associated with planting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号